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1. Introduction

Define the partition problem as follows. Given n numbers x1, x2, . . . , xn, find values for
γi ∈ {−1, 1} so as to minimize ∣∣∣ n∑

i=1

γixi

∣∣∣. (1.1)

Also define a related problem called the subset sum problem; here we are given a target
value t and asked to choose δi ∈ {0, 1} to minimize

∣∣∣t− n∑
i=1

δixi

∣∣∣. (1.2)

Determining whether the minimum achievable in (1.1), or in (1.2), is 0 is NP-complete, and
thus either minimization problem is NP-hard (see [GJ79, Karp72]).

In this paper we are interested in behavior of this problem when the xi are i.i.d. random
variables. Under fairly general conditions, the median of the solution for the subset sum
problem has been shown to be exponentially small when t is near E

[∑n
i=1 xi

]
[Luek82]; this

result has found application in the probabilistic analysis of approximation algorithms for
the 0-1 Knapsack problem [Luek82, GMS84]. The median solution to the partition problem
is known to be exponentially small [KKLO86] under fairly general conditions; this paper
commented “a significant question which our results leave open is the expected value of the
difference for the best partition” [KKLO86, p. 643].

Under fairly general conditions on the distribution of the Xi, we show that the expected
value of the solution to these problems is also exponentially small, i.e., of the form O(e−cn),
though we make no claim that we have the best value for the constant c. The proof method
is in some ways similar to the argument in [PIA78]: we model the problem by a sequence
of random variables and then apply a nonlinear transformation to make the sequence
amenable to analysis by martingale theory.

We note that while the bounds developed in [KKLO86, Luek82] on the median are
much more precise than those we show here on the expectation, the bounds in [KKLO86,
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Luek82] are not strong enough to show that the expectation is exponentially small; see the
first two paragraphs in [KKLO86, Section 4]. Moreover, the results of the present paper
show that it is likely that for every value z in some interval, some partition difference or
subset sum comes close to z (see Corollary 2.5 and the Corollaries of Section 3 for more
precise statements).

The result in this paper is simply a statement of the behavior of the optimum; we
do not know whether it can be achieved by a polynomial-time algorithm. We note that
algorithms for the partition problem have achieved considerable attention; see [CL91] for
details. In [KK82] the notion of differencing two variables is used. Differencing x and y
means replacing them by their difference |x− y|; this simply corresponds to placing x and
y on opposite sides of the partition. [KK82] showed that a fairly complicated algorithm
based on this idea tended to achieve a difference of only n−Ω(logn). In [Yaki96] this same
result was proven for a much simpler and more natural implementation of the differencing
method.

2. The Expected Subset-Sum Solution

Assume that the Xi are uniformly distributed over [−1, 1]. Also assume that some
η ∈ (0, 1

2) is specified. If A is some event, the indicator for A, written 1A, is the random

variable which is 1 if A holds and 0 otherwise. Let f̂k,η(z), or more briefly f̂k(z), be the
indicator for the event

∃δi ∈ {0, 1} such that
∣∣∣∑k

i=1 δiXi − z
∣∣∣ ≤ η. (2.1)

Informally, f̂k(z) tells us whether z can be approximated to within η by summing some

subset of the first k variables. Note that f̂0(z) = 1|z|≤η, i.e., f̂0(z) is simply 1 if |z| ≤ η and
0 otherwise. Also note that, letting ∨ denote the operator or as usually defined for 0-1
variables, we have for 0 < k < n

f̂k+1(z) = f̂k(z) ∨ f̂k(z −Xk+1) = f̂k(z) +
(
1− f̂k(z)

)
f̂k(z −Xk+1). (2.2)

For our analysis it will be useful to restrict the choices for the δi in (2.1). Say that a choice
of values for δ1, δ2, . . . , δk is admissible (for a given z ∈ [−1

2 ,
1
2 ]) if

∀k′ ∈ {1, . . . , k} , z −
k∑

i=k′

δiXi ∈
[
−1

2 ,
1
2

]
.

Say that z has an admissible η-approximation if (2.1) holds even when we are only allowed
to consider admissible choices for the δi. Define fk(z) to be the indicator for the event that
z has an admissible η-approximation. Then as before we have

f0(z) = 1|z|≤η, (2.3)

and the recurrence (2.2) must be modified to

fk+1(z) = fk(z) +
(
1− fk(z)

)
1z−Xk+1∈[−1/2,1/2]fk(z −Xk+1). (2.4)



Next define pk to be the random variable (depending on X1, . . . , Xk)

pk =

∫ 1/2

−1/2
fk(z) dz. (2.5)

Informally, this tells us the fraction of the interval [−1
2 ,

1
2 ] which has an admissible η-

approximation; the essence of the proof is to study how this fraction grows as k increases.
From (2.3) we have p0 = 2η. Note also that we must have

pk+1 ≤ 2pk, (2.6)

since the fraction of the interval which is covered can at most double. Also, if pk < 1 and
we fix the value of X1, . . . , Xk, then from (2.4), (2.5), and the fact that the density of Xk+1

is 1
2 over [−1, 1], we can compute the following recurrence for the expected value of pk+1:

E [pk+1] = E
[∫ 1/2

−1/2
fk+1(z) dz

]
=

∫ 1/2

−1/2
fk(z) dz +

∫ 1/2

−1/2

(
1− fk(z)

) ∫ 1

−1

1
21z−x∈[−1/2,1/2]fk(z − x) dx dz

= pk +

∫ 1/2

−1/2

(
1− fk(z)

) ∫ 1/2

−1/2

1
2fk(u) du dz

= pk + 1
2

∫ 1/2

−1/2

(
1− fk(z)

)
dz

∫ 1/2

−1/2
fk(u) du

= pk + 1
2(1− pk)pk. (2.7)

(Here X1, X2, . . . , Xk are considered fixed, and the expectation is taken with respect to
Xk+1.) Now for k + 1 ∈ {1, . . . , n} let Zk+1 be the random variable defined by

Zk+1 =


pk+1 − pk
pk(1− pk)

if pk < 1, and

1
2 if pk = 1.

(2.8)

From (2.7) we conclude that, regardless of the value of X1 . . . , Xk, we have

E [Zk+1] = 1
2 . (2.9)

Moreover, since using (2.6) we have pk ≤ pk+1 ≤ min(2pk, 1), one easily computes that

0 ≤ Zk+1 ≤ 2. (2.10)

Thus the sequence −k/2 +
∑k

i=1 Zi, for k = 0, 1, . . . , n is a martingale so a standard
application of a Hoeffding bound [Hoef63] yields



Lemma 2.1. For α ≤ n/2,

Pr
{ n∑
i=1

Zi ≤ α
}
≤ exp

(
−(n/2− α)2

2n

)
.

In order to monitor the evolution of the sequence pk, it is useful to consider the function

ψ(p) = lg p− ln(1− p) + p/2, (2.11)

so

ψ′(p) =
lg e

p
+

1

1− p
+

1

2
, (2.12)

(To avoid having to deal with special cases when the argument of ψ is 1, in the following
we assume the following conventions: ψ(1) =∞, ∞ ≥ r and ∞+ r =∞ for all real r, and
∞ ≥ ∞. Also, we assume that division has precedence lower than multiplication, so that
we can write, for example, en/2C instead of the more cumbersome en/(2C).)

Lemma 2.2. For pk ∈ (0, 1], we have

ψ(pk+1) ≥ ψ(pk) + Zk+1. (2.13)

Proof. If pk+1 = 1, then (2.13) holds since the left side is ∞. Also, if Zk+1 = 0, then
pk = pk+1 and (2.13) holds trivially. Otherwise we need to show that

1 ≤ ψ(pk+1)− ψ(pk)

Zk+1
=
ψ
(
pk + Zk+1pk(1− pk)

)
− ψ(pk)

Zk+1
. (2.14)

Consider several cases.

Case 1. pk ∈ [0, 1/4]. Then since pk + Zk+1pk(1 − pk) = pk+1 ≤ 2pk we have
Zk+1 ≤ 1/(1 − pk). Since ψ′ is decreasing over (0, 1

2), the right hand side of (2.14) is
bounded below (see Appendix) by

ψ(2pk)− ψ(pk)

1/(1− pk)
= (1− pk)

(
1 + ln

1− pk
1− 2pk

+
pk
2

)
≥ (1− pk)

(
1 +

pk
1− pk

)
= 1.

Case 2. pk ∈ (1/4, 1/2]. Straightforward computation shows that ψ′ has a minimum,
over (0, 1), of (

1 + (lg e)1/2)2 + 1
2 ≥

16

3
.

Hence the right-hand side of (2.14) is at least 16
3 pk(1 − pk), which is at least 1 for any

pk ∈ (1/4, 1/2].



Case 3. pk ∈ (1/2, 1). Then the right-hand side of (2.14) is at least 1 since one easily
sees that ψ′ is bounded below by 1/

(
pk(1− pk)

)
over the interval (pk, 1).

Lemma 2.3. If
n∑
i=1

Zi ≥ (1 + lg e) ln η−1 − 1
2 , (2.15)

then every number z ∈ [−1
2 ,

1
2 ] has an admissible 2η-approximation.

Proof. First note that

ψ(p0) = ψ(2η) = lg(2η)− ln(1− 2η) + 2η/2 ≥ 1 + lg(η), (2.16)

and
ψ(pn) = lg(pn)− ln(1− pn) + pn/2 ≤ − ln(1− pn) + 1

2

i.e.,
− ln(1− pn) + 1

2 ≥ ψ(pn). (2.17)

Using Lemma 2.2 and the assumption of this lemma we have

ψ(pn) ≥ ψ(p0) +
n∑
i=1

Zi ≥ ψ(p0) + (1 + lg e) ln η−1 − 1
2 . (2.18)

Adding the left and right sides of (2.16), (2.17), and (2.18) gives

ψ(p0)− ln(1− pn) + 1
2 + ψ(pn) ≥ 1 + lg(η) + ψ(pn) + ψ(p0) + (1 + lg e) ln η−1 − 1

2 ,

which simplifies to

− ln(1− pn) ≥ lg(η) + (1 + lg e) ln η−1 = − ln η,

implying 1 − pn ≤ η. Thus the measure of the portion of [−1
2 ,

1
2 ] over which fn is 0 is at

most η. Hence each point z of the interval [−1
2 ,

1
2 ] either has fn(z) = 1 or is within η of

a point z′ for which fn(z′) = 1. From the definition of fn, this implies that each point in
[−1

2 ,
1
2 ] has an admissible 2η-approximation.

Since we will frequently use the constant 1 + lg e, we will henceforth let C denote this
constant. (The numerical value of C is approximately 2.442695.)

Theorem 2.4. Let X1, X2, . . . , Xn be i.i.d. uniform over [−1, 1], and let 0 < η < 1
2 .

Suppose that n/2 ≥ C ln η−1. Then, except with probability bounded by

exp

(
−
(
n/2− C ln η−1

)2
2n

)
,

all values in [−1
2 ,

1
2 ] have admissible 2η-approximations.

Proof. This follows immediately from Lemma 2.1 and Lemma 2.3.



By omitting the condition about admissibility, and noting that the theorem is trivial
for η > 1

2 , we have

Corollary 2.5. Let X1, X2, . . . , Xn be i.i.d. uniform over [−1, 1], and let η ≥ e−n/2C

be given. Then, except with probability bounded by

exp

(
−
(
n/2− C ln η−1

)2
2n

)
,

we have
∀z ∈ [−1

2 ,
1
2 ], ∃S ⊆ {1, 2, . . . , n} such that

∣∣∣z −∑
i∈S

Xi

∣∣∣ ≤ 2η.

Now, define the [a, b]-subset-sum gap of X1, X2, . . . , Xn to be the smallest value of 2η
such that each z ∈ [a, b] can be approximated to within 2η by summing some sublist of the
Xi.

Theorem 2.6. The expected value of the [−1
2 ,

1
2 ]-subset-sum gap for n variables

X1, X2, . . . , Xn distributed uniformly over [−1, 1] is at most

2e−n/2C
(

1 + (2πn)1/2 C−1en/2C
2
)

= exp

(
−1

2

( 1

C
− 1

C2

)
n+ o(n)

)
.

Proof. Let 2η be the random variable (depending on X1, X2, . . . , Xn) giving the value
of the [−1

2 ,
1
2 ]-subset-sum gap, and define η0 = e−n/2C , i.e.,

n

2
= C ln η−1

0 . (2.19)

Now using Corollary 2.5 we can write

E [η] =

∫ ∞
0

Pr {η ≥ z} dz

≤ η0 +

∫ ∞
η0

Pr {η ≥ z} dz

≤ η0 +

∫ ∞
η0

e−(n/2−C ln z−1)2/2n dz. (2.20)

To evaluate the integral on the right side we make the substitution z = η0u to obtain∫ ∞
η0

e−(n/2−C ln z−1)2/2n dz =

∫ ∞
1

e−(n/2−C ln(η0u)−1)
2
/2nη0 du

= η0

∫ ∞
1

e−(n/2−C ln η−1
0 −C lnu−1)2/2n du

= η0

∫ ∞
1

e−(C lnu)2/2n du

by (2.19)

≤ η0 (2πn)1/2 C−1en/2C
2

. (2.21)

(See Appendix.) Substituting (2.21) into (2.20) results in the bound on E [2η] appearing in
the Theorem.



3. Generalizations

Note that the results of the previous section say not only that a particular z ∈ [−1
2 ,

1
2 ]

is likely to be near some subset sum of X1, X2, . . . , Xn, but in fact that it is likely that for
all z ∈ [−1

2 ,
1
2 ] some subset sum of X1, X2, . . . , Xn is near z. This makes it easy to prove a

variety of corollaries showing that related quantities have exponentially small expectation.

First we note that we can easily expand the range of values having good approximations
to an interval much larger than [−1

2 ,
1
2 ].

Corollary 3.1. Given any ξ > 0, there exists a c > 0 such that the expected value of
the

[
−(1 − ξ)n/4, (1 − ξ)n/4

]
-subset-sum gap for n variables X1, X2, . . . , Xn distributed

uniformly over [−1, 1] is O
(
e−cn

)
.

Proof. Let ξ′ = ξ/2 and consider two subsets of the random variables:

A =
{
X1, X2, . . . , Xdξ′ne

}
and B =

{
Xdξ′ne+1, Xdξ′ne+2, . . . , Xn

}
.

Let ε be the [−1
2 ,

1
2 ]-subset-sum gap of A; by Theorem 2.6 we know that E [ε] is exponentially

small. By a straightforward application of a Hoeffding bound, we can establish that, except
with exponentially small probability, the lowest subset sum achievable from B is less than
−(1− ξ)n/4 and the highest subset sum achievable from B is at least (1− ξ)n/4. But since
the range of the Xi is [−1, 1], if we look at all subset sums achievable from B in sorted
order, they cannot be more than a distance of 1 apart. Thus, except with exponentially
small probability, we can approximate any z ∈ [−(1− ξ)n/4, (1− ξ)n/4] to within 1

2 from
B, and then to within ε by fine-tuning the approximation using elements of A.

Note that the constant c may become quite small as ξ approaches 0. Also note that
one could not hope to improve the range of approximable numbers substantially, since the
expected sum of all of the positive (resp. negative) Xi is n/4 (resp. −n/4).

Now define the [a, b]-partition gap of X1, X2, . . . , Xn to be the smallest value of 2η such
that each z ∈ [a, b] can be approximated to within 2η by a sum of the form

n∑
i=1

γiXi for γi ∈ {−1, 1} . (3.1)

Corollary 3.2. Given any ξ > 0, there exists a c > 0 such that the expected value
of the [−(1 − ξ)n/2, (1 − ξ)n/2]-partition gap for n variables X1, X2, . . . , Xn distributed
uniformly over [−1, 1] is at most O(e−cn).

Proof. Let ξ′ = ξ/3 and consider two subsets of the random variables:

A =
{
X1, X2, . . . , Xdξ′ne

}
and B =

{
Xdξ′ne+1, Xdξ′ne+2, . . . , Xn

}
.

Let ε be the [−1
2 ,

1
2 ]-subset-sum gap of A; by Theorem 2.6 we know that E [ε] is exponentially

small. By setting

γi =

{
1 for Xi ≥ 0

−1 for Xi < 0



and using a Hoeffding bound, we can establish that, except with exponentially small
probability, the highest partition difference achievable from B is at least (1 − 2ξ′)n/2;
similarly, except with exponentially small probability the lowest (signed) partition difference
achievable from B is less than −(1 − 2ξ′)n/2. But since the range of the Xi is [−1, 1],
if we look at all partition differences achievable from B in sorted order, they cannot be
more than a distance of 2 apart. Thus, except with exponentially small probability, we
can approximate any z ∈ [−(1 − 2ξ′)n/2, (1 − 2ξ′)n/2] to within 1 from B. Except with
exponentially small probability we also have∣∣∣∑

i∈A
Xi

∣∣∣ ≤ ξ′n/2,

in which case we can also approximate any z ∈ [−(1 − 3ξ′)n/2, (1 − 3ξ′)n/2] =
[−(1− ξ)n/2, (1− ξ)n/2] to within 1 by selecting values for γi (for i ∈ B) by a sum of the
form ∑

i∈B
γiXi −

∑
i∈A

Xi.

Assume that we now fix z and the corresponding values of γi for i ∈ B, and let

z′ = z −
∑
i∈B

γiXi +
∑
i∈A

Xi ∈ [−1, 1]. (3.2)

Since A has a [−1
2 ,

1
2 ]-subset-sum gap of ε, and |z′| ≤ 1, we can choose values for δi ∈ {0, 1}

(for i ∈ A) so that ∣∣∣z′ − 2
∑
i∈A

δiXi

∣∣∣ ≤ 2ε.

Letting γi = 2δi − 1 (for i ∈ A), this means there are γi ∈ {−1, 1} (for i ∈ A) such that∣∣∣z′ −∑
i∈A

(γi + 1)Xi

∣∣∣ ≤ 2ε. (3.3)

Substituting in (3.2) into (3.3) gives

2ε ≥
∣∣∣z −∑

i∈B
γiXi +

∑
i∈A

Xi −
∑
i∈A

(γi + 1)Xi

∣∣∣ =
∣∣∣z −∑

i∈B
γiXi −

∑
i∈A

γiXi

∣∣∣ =
∣∣∣z − n∑

i=1

γiXi

∣∣∣,
giving us the desired approximation for z.

These results can easily be generalized to a much larger class of distributions. Let
U(a, b) denote the uniform distribution over [a, b]. Say that a distribution G contains some
uniform distribution if there exists a distribution G1 and constants α ∈ (0, 1], c, and h > 0
such that

G = (1− α)G1 + αU(c− h, c+ h).

If in particular c = 0, say the distribution contains some uniform distribution centered at 0.



Corollary 3.3. Let X1, X2, . . . , Xn be i.i.d. bounded random variables. Suppose that
the distribution of X1 contains some uniform distribution. Let

µ− = E [1X≤0X] , µ+ = E [1X>0X] , and µabs = E [|X|] = µ+ − µ−.

(Note that µ− ≤ 0.) Finally, choose any ξ > 0. Then both the expected value of the[
(µ− + ξ)n, (µ+ − ξ)n

]
-subset-sum gap and the expected value of the

[
(−µabs + ξ)n,

(µabs − ξ)n
]
-partition gap for X1, X2, . . . , Xn are exponentially small.

Proof. First consider the partition gap. Let the support of X1 be contained in [−d, d],
and let ξ′ = ξ/2d. Partition the variables into two sets

A =
{
X1, X2, . . . , X2dξ′n/2e

}
and B =

{
X2dξ′n/2e+1, X2dξ′n/2e+2, . . . , Xn

}
.

First consider the variables in A. Recalling that the distribution of these variables
contains some uniform distribution, by definition we can find constants α > 0, c, and
h > 0, and a distribution G1 such that the variables in A can be considered to have been
generated as follows: flip a biased coin which comes up heads with probability α. If it
comes up heads, return a uniform draw from [c − h, c + h]; if it comes up tails, return a
value chosen according to the distribution G1. Partition A as Au ∪AG, where the variables
in Au correspond to heads and those in AG correspond to tails. Then by a Hoeffding bound,
except with exponentially small probability, we have

|Au| ≥ αξ′n/2 + 1. (3.4)

If |Au| is odd, move the last variable from Au to AG, so that |Au| becomes even.

Finally consider the variables in Au, which by (3.4) we may index as X1, X2, . . . , X2k

with 2k ≥ αξ′n/2. As in [Tsai92], we first perform a preprocessing step in which we
difference these in pairs to obtain

X1 −X2, X3 −X4, X5 −X6, . . . , X2k−1 −X2k. (3.5)

This corresponds to deciding that the differenced variables in each pair will appear on
opposite sides of the partition. Note that each of these differences has a triangular
distribution centered at 0. By a resampling argument like that in [KK82], we can partition
these differences into two sets Du and Do, such that the variables in Du have a uniform
distribution, and (except with exponentially small probability, by a Hoeffding bound)
|Du| ≥ k/3 = Θ(n). By Corollary 3.2, the [−2d, 2d]-partition gap of the values in Du, say ε,
has an exponentially small expectation.

By another application of the Hoeffding bound, we can conclude that, except with
exponentially small probability, the sum of the absolute values of the variables in set B
is at least (µabs − ξ)n. If so, then since all values in B ∪ AG ∪ Do lie in [−2d, 2d], the
[−(µabs − ξ)n, (µabs − ξ)n]-partition gap of B ∪ AG ∪Do must be at most 2d.

Thus, much as before, we can approximate any desired value in [−(µabs−ξ)n, (µabs−ξ)n]
to within 2d using variables in B ∪AG ∪Do, and then to within ε using the variables in Du.

A fairly similar proof holds for the case of the subset-sum gap. This time, for the
variables in Au, for each i we include X2i−1 in the sum and then decide whether or not to
include X2i −X2i−1; this is equivalent to deciding whether to include X2i−1 or X2i in the
sum. We omit the details.
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A. Appendix

This appendix gives the details of a few omitted computations, in the hope that this
may save the interested reader time.



For verifying Case 1 of Lemma 2.2, we use the following simple observation, letting
f = ψ, x = pk, u = Zk+1(1− pk)pk, and u0 = 2pk.

Observation A.1. Suppose that f ′′ exists and is negative over [x, x + u0]. Then for
any u with 0 < u ≤ u0, we have

f(x+ u)− f(x)

u
≥ f(x+ u0)− f(x)

u0
.

Then we use the fact that for 0 ≤ x < 1/2, we have

ln
1− x
1− 2x

=

∫ 1−x

1−2x

1

z
dz ≥

∫ 1−x

1−2x

1

1− x
dz =

x

1− x
,

letting x = pk.

For verifying (2.21), note that if we let x = eu, so dx = eudu, then∫ ∞
1

e−a ln2 xdx =

∫ ∞
0

e−au
2

eudu ≤
∫ ∞
−∞

e−au
2+udu = (π/a)1/2 e1/4a.


