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Abstract Using a large set of human segmented natural
images, we study the statistics of region boundaries. We
observe several power law distributions which likely arise
from both multi-scale structure within individual objects
and from arbitrary viewing distance. Accordingly, we de-
velop a scale-invariant representation of images from the
bottom up, using a piecewise linear approximation of con-
tours and constrained Delaunay triangulation to complete
gaps. We model curvilinear grouping on top of this graph-
ical/geometric structure using a conditional random field
to capture the statistics of continuity and different junc-
tion types. Quantitative evaluations on several large datasets
show that our contour grouping algorithm consistently dom-
inates and significantly improves on local edge detection.
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1 Introduction

Finding the boundaries of objects and surfaces in a scene
is a problem of fundamental importance for computer vi-
sion. For example, there is a large body of work on ob-
ject recognition which relies on boundary detection to pro-
vide information about object shape (e.g. Borgefors 1988;
Huttenlocher et al. 1993; Belongie et al. 2002; Felzenszwalb
2001). Even in cases where simple intensity features are suf-
ficient for object detection, e.g. faces, it is still desirable
to incorporate boundary detection in order to provide pre-
cise object segmentation (e.g. Borenstein and Ullman 2002;
Tu et al. 2005; Yu et al. 2002). The availability of high qual-
ity estimates of boundary location will ultimately govern
whether these algorithms are successful in real-world scenes
where clutter and texture abound.

The problem of boundary detection has been attacked at
several different levels:

1. Local edge detection: this is the traditional approach to
boundary detection and has been an area of central re-
search since the early days of computer vision. A local
edge detector typically considers a small patch centered
at each image location, measures oriented brightness gra-
dients, and outputs this contrast as the boundary like-
lihood. The Canny edge detector (Canny 1986) is per-
haps the most influential and popular algorithm in this
category. More recent approaches (Konishi et al. 1999;
Martin et al. 2004) train a classifier on a collection of
natural images in order to combine local gradient cues.
By nature of its locality, edge detection is necessarily
limited in how much information it can extract about
boundary presence. Recent psychophysical studies (Mar-
tin et al. 2003) have suggested that current techniques
may not be far from this limit: when presented with only
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local patches, human observers perform no better than
a gradient based classifier (Martin et al. 2004). It seems
that utilizing greater contextual information is necessary
to further improve boundary detection.

2. Mid-level inference: since boundaries and regions inter-
act over large parts of the image, it makes sense to de-
fine global criteria for determining the correct boundaries
(e.g. Geman and Geman 1984). Work in this category
is often motivated by classical studies in human visual
perception (Palmer 1999), particularly the Gestalt move-
ment which emphasized many non-local phenomena in
perception. Region grouping or segmentation focuses on
the association of similar regional elements. The dual ap-
proach, curvilinear continuity, focuses on exploiting the
spatial continuity of bounding contours.

3. High-level knowledge: a recent trend in computer vision
is to combine object knowledge with low- and mid-level
processing (Borenstein and Ullman 2002; Tu et al. 2005;
Yu et al. 2002). If by using shape or appearance-based
templates, one could recognize objects in an image, it
becomes relatively straightforward to locate the bound-
aries of the detected objects. High-level knowledge is a
very powerful cue and quite effective where it applies.
However, it is statistically and computationally expen-
sive to model multiple object categories and poses. One
may also argue that, as human subjects can easily detect
boundaries of novel objects without explicitly recogniz-
ing them, boundary detection should primarily be an in-
put to object recognition, not vice versa.

Our work falls in the category of mid-level approaches
to boundary detection. We utilize curvilinear continuity, a
well-studied contextual cue, to integrate local measurements
of edge contrast. Our motivation is both to understand the
extent to which curvilinear continuity informs boundary de-
tection, if at all, and to build a mid-level boundary detector
that achieves better performance than local approaches by
exploiting this information.

1.1 Related Work on Curvilinear Continuity

The study of curvilinear continuity has a long and influen-
tial history in psychophysics as well as neurophysiology,
starting with good continuation, described in Wertheimer’s
work (Wertheimer 1938); illusory contours, studied and
popularized by Kanizsa (1979); the discovery of related
neural mechanisms in V2 (von der Heydt et al. 1984); and
the more recent theory of relatability (Kellman and Ship-
ley 1991), which characterizes geometric conditions under
which contour completion takes place.

In computer vision there also exists a rich literature on
how to model curvilinear continuity (e.g., Shashua and Ull-
man 1988; Parent and Zucker 1989; Heitger and von der
Heydt 1993; Mumford 1994; Williams and Jacobs 1997).

A typical approach consists of detecting contour fragments
based on brightness contrast and then linking up fragments
using some measure of continuity. A popular family of ap-
proaches model continuity by a stochastic motion of tan-
gents (Mumford 1994; Williams and Jacobs 1997; Thornber
and Williams 2001) and are fairly successful in modeling il-
lusory contours. More recent developments focus on finding
salient closed contours (Elder and Zucker 1996; Williams
and Thornber 1999; Jermyn and Ishikawa 2001) and make
use of closure to locate the most salient cycle in an image.

Unfortunately, most existing approaches have only been
demonstrated on a few synthetic or simple real images. Such
limited experiments are far from convincing: while we may
be able to complete low-contrast edges using continuity,
spurious completions are often introduced in the process. Is
the net effect positive or negative? This question can only
be answered empirically by quantitative measurements. To
the best of our knowledge, no such measurements have been
made on a large, diverse set of real-world images. We expect
this may explain why, despite the large amount of work on
contour completion in the last 15 years, completion has not
become a standard pre-processing step every time a bound-
ary map is needed.

1.2 Our Approach

Central to our approach is the use of human-segmented im-
ages of natural scenes. Three such datasets are utilized in
this work: a set of 30 news photos of baseball players (Mori
et al. 2004), 344 images of horses (Borenstein and Ullman
2002) and the Berkeley Segmentation Dataset (Martin et al.
2002), containing 1000 images of various natural scenes.
These datasets are used for two distinctive purposes:

1. To gain insights about the problem: we study the sta-
tistical properties of human-marked boundaries in these
datasets. Empirical work along this line has confirmed
the ecological validity of curvilinear continuity (Geisler
et al. 2001; Ren and Malik 2002; Elder and Goldberg
2002). An important finding from our study is that the
statistics of boundary contours obey power-law distribu-
tions suggestive of scale invariance (see Sect. 2).

2. To quantitatively evaluate models of continuity: we use
human-marked ground-truth boundaries to train the mod-
els, and evaluate them on held out test data. We measure
precision and recall of the models and compare them to
local edge operators.

The contribution of this paper is a probabilistic model
of continuity and closure built on a scale-invariant geomet-
ric structure which yields boundary estimates that are quan-
tifiably better than the input provided by a local detector.
Our algorithm starts with local estimates of the probabil-
ity of boundary (Pb) based on brightness and texture gra-
dients (Martin et al. 2004). The resulting edge map is dis-
cretized into a set of piecewise linear segments and potential
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completions are generated utilizing the constrained Delau-
nay triangulation, as described in Sect. 3. We show how to
carry out this construction in a scale-invariant manner and
that the resulting geometric structure empirically captures a
vast majority of the true image boundaries, while typically
reducing the complexity from hundreds of thousands of pix-
els to a thousand candidate line segments.

In Sect. 4 we develop two models of curvilinear continu-
ity on top of this geometric structure: a simple local model
which classifies each pair of neighboring edges indepen-
dently and a global model which uses a conditional random
field (Lafferty et al. 2001) in order to enforce both conti-
nuity and long-range probabilistic constraints on junctions.
Performance evaluations of both the local and global models
are presented in Sect. 5 along with exemplary results.1

2 Empirical Studies of Contours in Natural Images

We begin with a study of the statistical properties of bound-
ary contour shape in natural scenes. For this purpose, we
use the Berkeley Segmentation Dataset (Martin et al. 2002)
which consists of 1000 images of resolution 320-by-480
from the Corel stock photo database, covering a wide vari-
ety of natural scenes containing humans and other animals,
landscapes and architecture.

2.1 Testing the Markov Model

An influential probabilistic model of contours is the first or-
der Markov model explored in Mumford (1994), Williams
and Jacobs (1997). Suppose a contour C is parameterized by
arc-length s, then if its curvature κ(s) is random and inde-
pendent from location to location, the tangent direction t(s)
is a random walk. The Markov property states that the dis-
tribution of the tangent t(s + 1) at the next location s + 1
is dependent only on t(s). This model is appealing since
the Markov property enables efficient computation (i.e. dy-
namic programming) (Williams and Jacobs 1997; Zhu 1999;
Ren and Malik 2002).

To empirically study contours in natural images, we trace
out human marked segment boundaries in the dataset and
numerically estimate the derivatives of each resulting con-
tour C.2 Figure 1 shows the empirical distribution of the tan-
gent angle change, P(t(s + 1) − t(s)). This distribution ex-
hibits two non-Gaussian properties often observed in natural
images: (1) the distribution is sharply peaked around zero,

1The software and datasets used in this work have been made available
through the following link: http://www.eecs.berkeley.edu/Research/
Projects/CS/vision/grouping/ijcv2006/.
2We apply a simple 1-D Gaussian smoothing along C before estimat-
ing derivatives.

Fig. 1 The empirical distribution of tangent change between two ad-
jacent locations along a contour C. This distribution is sharply peaked
around zero and has a heavy tail, suggesting that boundaries are mostly
smooth but make occasional sharp turns

i.e. in most cases boundaries are smooth; and (2) the distrib-
ution has a heavy tail, i.e. occasionally boundaries do make
sudden turns.3 This is consistent with empirical findings in
other related studies (Zhu 1999; Elder and Goldberg 2002).

In the Markov model, curvature κ(s) is assumed to be in-
dependent from location to location. As s increases, at each
step there is a constant probability p that a high curvature
event {κ(s) > κ0} occurs. Therefore, if we look at a contour
segment L between two high curvature locations, the wait-
ing time between these two independent events is given by
the length |L| and should obey an exponential distribution:
P(|L| = t) = p(1 − p)t .

This observation leads to an empirical test of the valid-
ity of the Markov contour model. We estimate the curvature
along a contour C and break it at locations where the curva-
ture is above a threshold and is at a local maximum. Thus a
contour C is decomposed into segments where each contour
segment L is smooth. Figure 2 shows a few examples of this
decomposition.

Figure 3 shows the empirical distribution of contour seg-
ment length |L|, on a log-log scale in (a) and a semi-log
scale in (b). We fit a line in both cases, for a range of lengths
between 10 and 200 pixels. The r2 statistic, a measure of the
goodness of fit, is 0.9917 for the power law fit, and 0.9391
for the exponential fit.

Limited by image resolution, the empirical data we study
spans only one order of magnitude. Nevertheless, a power
law fits the data almost perfectly,4 much better than an ex-

3Although there are man-made objects in the dataset, there seems to be
no special role associated with 90-degree angles.
4Deviations from this power law at fine scales may be attributed to the
resolution limits of the pixel grid and patience of human segmenters.
Deviations at large scales are inevitable due to finite image size.
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Fig. 2 We take each boundary contour C and break it up at local cur-
vature maxima (corners). Shown are a few examples of this decompo-
sition. The contour segment length |L| is large for large-scale features

such as the back of an animal, and is small in the vicinity of fine-scale
details such as the head

Fig. 3 Empirical distributions of approximately straight contour seg-
ment length |L|. (a) The marginal distribution of |L| on a log-log scale.
It closely follows a power law with α = 2.40, in direct contradiction

with the Markov model that predicts an exponential distribution. (b) As
a comparison, the same distribution on a semi-log scale and an expo-
nential fit. The power law fits the data much better than the exponential

ponential distribution. This is a fairly robust result: if we
change the smoothing and/or the curvature threshold, the ex-
ponent may drift a bit, but the power law still holds. This is
in direct contradiction with the exponential prediction under
the Markov model. We therefore conclude that the Markov
assumption is empirically false.

In some ways, the failure of the first-order Markov con-
tour model for natural images is not so surprising since the
model cannot enforce long range structure. In particular,
straight lines are very uncommon in the Markov model, as
they require tangent changes to be small for a long period of
time. Typical contours sampled from this model are random
walks and lack the large-scale structures evident in natural
contours.

2.2 Sources of Multi-scale Structure

Power law distributions are typically associated with scale-
invariance phenomena, and have been discovered in many
studies of natural image statistics. For example, the power
spectra and wavelet coefficients of natural images typically
follow a power law distribution (Ruderman and Bialek 1994;
Huang and Mumford 1999), as do geometric quantities such
as the area of homogeneous regions (Alvarez et al. 1999).

These power laws have confirmed the near scale-invariance
of natural images and have inspired many efforts in devel-
oping scale-invariant statistical models for generic images
(e.g. Ruderman 1997; Lee et al. 2001). The power law in
Fig. 3 is no exception: it suggests that contours are multi-
scale in nature.

Introspection suggests there are at least two potential
sources of multi-scale structure in natural scenes:

Arbitrary viewing distance an object may appear at any
distance to the observer. Figure 4(a) shows a line-drawing
illustration of an object viewed at two distances, hence ap-
pearing at two different scales.

Hierarchy of parts in a single object objects in the natural
world are themselves multi-scale as they consist of parts at
various scales. For example, Fig. 4(b) shows the boundary
of a human body which has a hierarchy of parts: head, torso,
arms, legs, fingers, hair, each with its own distinct scale.

Arbitrary viewing distance implies that the collection of
all natural images should exhibit invariant statistics over a
continuum of scales. However, this imposes few constraints
on the appearance of any specific image. In contrast, hierar-
chical or “fractal-like” structure typically involves a discrete
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set of relevant scales rather than a continuum, but can exist
within a single image.

If scaling behavior is due solely to arbitrariness in view-
ing distance (e.g. Ruderman 1997), a nearby object would
have smoother boundaries and therefore a higher probability
for long straight segments |L|, while a small, far away object
would have more high-curvature points along its boundary
and shorter segments. We can test this prediction by using
|C|, the length of the entire boundary, as an indication of
the object scale. In Fig. 5(a), we show the empirical distri-
butions of |L|, where the contour segments are divided into
four groups, from small |C| to large |C|. We find that the
distributions are almost identical; there is no indication that
larger |C| leads to significantly higher probability for large

Fig. 4 Two sources of multi-scale structure in natural scenes:
(a) Imaging geometry is free to vary so the same object can appear
at any distance from the observer, resulting in scaled versions appear-
ing in the image. (b) Objects consist of a collection of parts which have
different characteristic scales. Here the torso, leg, head and fingers con-
sist of roughly parallel boundaries at vastly different scales. In either
case, it is desirable that vision algorithms adapt to the appropriate scale
at each image location

|L|. A similar phenomenon is observed in the case of con-
tour curvature, as shown in Fig. 5(b).

We take these results as a strong evidence that arbitrari-
ness of viewing distance is not the sole source of scale-
invariance; the multi-scale nature of individual objects is
also important. While scale invariance has been studied
mostly as a phenomenon in large ensembles of images, prop-
erties that hold for individual objects have more immediate
implications in practice. Any model of boundaries should
clearly take both factors into consideration.

3 A Scale-Invariant Representation of Contours

The empirical studies in the previous section provide guid-
ance in designing a model of contour completion. Since con-
tour segments show non-Markov, multi-scale structure, an
appropriate model for the contours of an object should al-
low for long range dependencies that simultaneously cap-
ture both large and small scale features. Furthermore, since
that object can appear at any distance from the camera, these
connections should co-vary with the scale of the object in the
scene. Similarly, the representation of contours in an entire
scene should be independent of image resolution (at least
over a range of scales where this is possible).

3.1 Decomposition into Linear Segments

Consider the contour decomposition shown in Fig. 2. Here
contours are decomposed in such a way that each con-
tour segment is approximately straight and the collection

Fig. 5 We use |C|, the length of an entire boundary, as an indication
of the object scale. (a) The distributions of smooth segment lengths |L|
conditioned on |C|. If arbitrary viewing distance were the only source
of scale-invariance, larger |C| would be correlated with smoother con-
tours and higher probabilities of large |L|. Instead, we find that the
empirical distributions are very similar for different ranges of |C|,

showing no such correlation. This indicates that multi-scale nature of
individual objects also plays an important role. In (b) a similar phe-
nomenon is observed in the conditional distributions of R = 1/κ , the
radius of curvature. The distributions of R are also very similar for
different ranges of |C|
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Fig. 6 Building a discrete graph structure from bottom-up. (a) We take
a contour detected by a local edge operator Pb and recursively split
it until the angle θ (a scale-invariant quantity) is below a threshold.
(b) We complete this piecewise linear structure with constrained De-
launay triangulation. G-edges (gradient edges detected by Pb) are in

black and C-edges (completed by CDT) in dashed/green. The resulting
triangulation graph is an efficient representation of the image and co-
varies with the object scale, as illustrated in this example: the internal
triangulation of the two objects (in particular the “true” completions)
are the same, regardless of the scale change

of straight line approximations efficiently describes differ-
ent scale structures within the depicted objects. Large-scale
features (smooth contour segments), such as the back of an
animal, are conserved and not broken into fragments. On the
other hand, fine-scale parts are further sub-divided; hence
the “sampling density” is high in places where local curva-
ture maxima abound. Interestingly, this is consistent with the
classical theory that information along contours is concen-
trated in regions of high magnitude of curvature (Attneave
1954).

While such a decomposition captures the multi-scale
structure within an object, it does not covary with the view-
ing distance as it depends on curvature (measured in cam-
era coordinates). However, replacing curvature with a truly
scale-invariant quantity, e.g. turning angle, yields a repre-
sentation that satisfies our criteria above.

We construct our contour segment based representation
as follows: given an input image, first we use the local
Pb operator (Martin et al. 2004) to detect low-level edges.
Canny’s hysteresis thresholding is used to trace out the de-
tected contours. We set the threshold fairly low such that
most edges with low-level contrast are retained. We then re-
cursively split these contours until each segment is approxi-
mately straight.

Figure 6(a) shows an illustration of this splitting proce-
dure: for a given contour, let θ be the angle between seg-
ments ca and cb. Pick the set of points {a, b, c}, in a coarse-
to-fine search, such that the angle θ is maximized. If θ is
above a threshold, split the contour by adding a vertex at
c and continue.5 In our implementation, we fix a and b to
be the two end points of the curve, and vary the point c to
maximize θ .

5Due to the non-maximum suppression in Pb, edges near T-junctions
are sometimes missing. A heuristic is added to handle T-junctions:
when a vertex is very close to another line (relative to line length),
we split this line and insert an additional vertex.

In general, this angle-based decomposition could be “un-
stable” when processing a curve with near constant curva-
ture (i.e. an arc of a circle) close to the threshold. However,
as we have observed in the empirical statistics, contours in
natural images tend to have sharp turns or corners which
anchor the decomposition and make it stable under normal
circumstances.

3.2 Completion with Constrained Delaunay Triangulation

In real images, a local edge operator may miss some low-
contrast contours, leaving gaps in our representation. We use
the constrained Delaunay triangulation algorithm to span
these gaps, completing the piecewise linear approximation.
The Delaunay triangulation (DT) is the dual of the Voronoi
diagram and is the unique triangulation of a set of vertices
in the plane such that no vertex is inside the circumcircle of
any triangle. The constrained Delaunay triangulation (CDT)
is a variant of the DT in which a set of user-specified edges
must lie in the triangulation. The CDT retains many nice
properties of DT and is widely used in geometric modeling
and finite element analysis. It was used to find convex con-
tours in Huttenlocher and Wayner (1992) and also recently
applied to image segmentation by Wu and Yu (2003).

In the context of contour completion, the CDT’s ability to
complete contours across gaps in the local detector output is
of particular interest. A typical scenario of contour comple-
tion is one low-contrast contour segment (missed by Pb) in
between two high-contrast segments (both detected by Pb).
If the low-contrast segment is short in length, it is likely that
no other vertices lie in the circumcircle and CDT will cor-
rectly complete the gap by connecting the two high-contrast
segments. This is closely related to the medial axis and lig-
ature analysis used in August et al. (1999). We show some
example completions in Fig. 7.

We used the TRIANGLE program (Shewchuk 1996) to
produce CDTs as shown in Fig. 7. The linearized edges ex-
tracted from the Pb contours, which we refer to as gradient
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Fig. 7 An example of the CDT
completion. G-edges are in
black and C-edges in
dashed/green. Note how the
CDT manages to complete gaps
on the front legs of the elephant
(red highlight on the inset at
right). These gaps are
commonly formed when an
object contour passes in front of
a background whose appearance
(brightness/texture) is similar to
that of the object

edges or G-edges, become constrained edges in the trian-
gulation. The remaining completion edges or C-edges are
filled in by the CDT. The process also partitions the image
into disjoint triangular regions.

Figure 6(b) shows the output triangulations for our toy
example: although the two views of the “object” greatly dif-
fer in scale, the line approximations of their contours are al-
most identical and so are the triangulations. This invariance
leads to interesting applications of this representation for ob-
ject recognition (Ren et al. 2005; Ren 2007). We note, how-
ever, that the edge detector we use, Pb, is not scale invariant.
The computed edge maps may differ at different image res-
olutions; hence the scale invariance of our representation is
only approximate over some range of scales.

3.3 Using the Triangulation Graph

In the remainder of the paper, we will describe models of
curvilinear continuity built on top of the triangulation graph.
The CDT graph has many advantages over using the pixel
grid:

• It is (approximately) invariant to image resolution and ob-
ject scale, while efficiently representing multi-scale struc-
ture within individual objects (i.e. both long straight lines
and fine-scale details).

• By moving from ≈100,000 pixels to ≈1000 edges, it
achieves high computational efficiency, independent of
image resolution.

• By using contour segments (instead of pixels) as tokens,
the CDT graph allows modeling of longer-range interac-
tions.

• By restricting completions to the edges in the graph, it
partially solves the problem of having too many spurious
completions.

The triangulation graph is an image-dependent structure
built from low-level signals. It is far more concise than
generic, image-independent multi-scale representations (e.g.
multi-scale Markov random fields Leuttgen et al. 1993;
Li 1995 or Beamlets Donoho and Huo 2002). For example,
existing multi-scale contour grouping algorithms (Sharon
et al. 2000; Ren and Malik 2002) operate on a pyramid of
fixed pixel grids and combine completions across scales. In
comparison, the triangulation graph provides a single mid-
level structure which makes inference (and learning) much
more efficient; no propagation of information is needed in-
side each edgel. It also allows us to explicitly represent junc-
tion geometry and connectivity.

Before we proceed, a natural question to ask is how good
the triangulation graph is as an approximation of the input
image? How much important image structure is lost in the
triangulation process? To answer this, as well as perform
quantitative training and testing, we first need to establish a
technique for transferring our ground-truth human segmen-
tations from the pixel grid onto the triangulated graph.

For training, we set binary ground-truth labels on CDT
edges by running a maximum-cardinality bipartite match-
ing between the human marked boundaries and the CDT
edges with a fixed distance threshold. We label a CDT edge
as boundary if 75% of the pixels lying under the edge are
matched to human boundaries; otherwise we label it as non-
boundary. For testing, we always project the boundary esti-
mate of CDT edges back to the pixel-grid, allowing direct
comparison with traditional edge detectors.
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Fig. 8 This Precision-Recall curve verifies that moving from pixels to
the CDT completion doesn’t give up any boundaries found by the lo-
cal measurement. For comparison, we also show an upper-bound curve
given by assigning labels to the CDT edges using ground-truth. The up-
per bound curve has a precision near 1 even at high recall and achieves
a greater asymptotic recall than the local boundary detector, indicating
it is completing some gradientless gaps

Throughout the rest of this paper, performance is eval-
uated with using a precision-recall curve which shows
the trade-off between false positives and missed detec-
tions. For each given thresholding t of the algorithm out-
put, boundary points above threshold are matched to human-
marked boundaries H and the precision P = P(H(x, y) =
1|Pb(x, y) > t) and recall R = P(Pb(x, y) > t |H(x,y) = 1)

are recorded (see Martin et al. 2004 for more discussion).
Using this performance measure, we can show empiri-

cally that very little of the true boundary structure is lost in
this discretization process. Figure 8 gives the performance of
the local boundary detector Pb as well as the performance
when we assign the average underlying Pb to each CDT
edge. In addition, we show an upper-bound curve by as-
signing soft ground-truth labels to the CDT edges: similar to
the evaluation process, we run a bipartite matching between
ground-truth boundary pixels and pixels on the CDT edges.
The soft ground-truth labels are the percentage of pixels on
the CDT edges that are matched to human marked pixels.
This gives the “best” possible boundary labeling constrained
by the CDT representation.

These empirical results show that assigning a single prob-
ability of boundary to an entire CDT edge does not hurt per-
formance and that the CDT graph contains most edges found
by Pb. Moreover, the precision of the upper-bound curve is
close to 100% even at high-recall, which clearly indicates
that little image structure is lost in the triangulation process.
The gap between the asymptotic recall of Pb and the upper-

Fig. 9 This figure shows the relative merits of the CDT versus an
alternate completion scheme based on connecting each vertex to the
k-nearest visible vertices for k = {1,3,5,7}. The plot shows the as-
ymptotic recall rate (the number of illusory contours found) versus the
average number of potential completions which need to be considered.
An ideal algorithm would achieve asymptotic recall of 1 with very few
potential completions. The single filled marker shows performance of
the CDT based completion while the curve shows performance over a
range of choices of k. For each dataset, we find that the CDT based
completion gives better recall rate at a given number of potential com-
pletions the than k-nearest visible neighbor algorithm

bound curve shows that the CDT is completing some con-
tours that are completely illusory (i.e. contours with no local
evidence).

3.4 Alternative Completion Schemes

The CDT is not the only scale-invariant scheme for gener-
ating completions from a set of detected edgels. One likely
alternative is to connect each vertex with up to k of its near-
est neighbors subject to the visibility constraint that added
completion edges do not cross gradient edges detected lo-
cally. We refer to this as k-nearest visible neighbor (k-NVN)
completion.

As k increases, chances are higher that boundary gaps are
correctly completed, at the cost of more spurious comple-
tions. To quantitatively compare these completion schemes,
we test them on the human-annotated datasets, estimating
two quantities for each scheme: m̄, average number of com-
pletions per image; and R0, the asymptotic recall rate (per-
centage of ground-truth boundary pixels being detected if all
the edges are turned on). A good completion scheme should
have a small m̄ and a high R0. The results are shown in
Fig. 9. For all three datasets, we find that the CDT based
completion is more efficient than k-NVN. In addition, the
CDT yields a planar graph which is conceptually simple to
work with.
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Fig. 10 (a) A simple 2-edge model of local curvilinear continuity.
Each edge has associated features: the average Pb and whether it is a
G-edge or C-edge. Continuity is measured by the angle θ . The edge
pair is either classified as a continuation (Xe0 = 1,Xe1 = 1) or not.

In the 2-edge product model, (b), evidence of continuity come from
both ends of edge e0. The new “probability of boundary” for e0 is the
product of the 2-edge model on both pairs (e0, e1) and (e0, e2)

4 Modeling Curvilinear Continuity

In the previous section we described how to construct a dis-
crete, scale-invariant structure, the CDT graph, from low-
level edges. We will associate a random variable Xe to every
edge e in the CDT graph, where Xe = 1 if e corresponds to a
true boundary contour and Xe = 0 otherwise. The variables
{Xe} interact with each other through vertices or junctions in
the graph. Our goal is to build a probabilistic model of con-
tinuity and junction frequency on the CDT graph and make
inferences about {Xe}.

We will introduce two models: one for local continu-
ity and one for global continuity and junctions. The local
continuity model considers only the immediate neighbors
of each edge e, estimating the corresponding Xe indepen-
dently based on its local context. This serves as a baseline
model and is a convenient place to study the relevant fea-
tures (which are all defined locally). The global continuity
model uses conditional random fields in order to build a joint
probabilistic model over the collection of all edges in the
CDT. We fit model parameters and estimate the marginals
of the random field on Xe using loopy belief propagation.

4.1 A Baseline Model of Local Continuity

Each edge e in a CDT graph is naturally associated with a
set of features including the average Pb estimated for pixels
along the edge e and whether it is a G-edge (detected in Pb)
or C-edge (completed by the CDT). The local context of e

includes these features and those of neighboring edges in the
CDT graph.

Consider the simplest case of context: a pair of connected
edges (shown in Fig. 10(a)). Each edge can be declared a
true boundary or not, yielding four possible labellings of
the pair. We observe that the ground-truth contours in our
datasets are almost always closed; line endings and junctions
are rare. Therefore we make the simplifying assumption that
there are only two possible labellings: either both edgels are
on, or both are off. Modeling local continuity thus becomes
a binary classification problem.

Our best local model uses as features Pb, the average Pb
over the pair of edges; G, an indicator variable whether both

of the edges are G-edges, and θ , the angle formed at the con-
nection of the pair. We use logistic regression to fit a linear
model to these features. We found that logistic regression
performed as well as other classifiers (we also tested sup-
port vector machines and hierarchical mixture of experts).
It has the advantage of being computationally efficient and
simple to interpret.

To apply the local continuity model, we use the classi-
fier to assign a new “probability of boundary” value to each
edge e. Consider Fig. 10(b): evidence of continuity comes
from both ends of an edge e0, as a contour at e0 would have
to continue in both directions. We assume that these two
sources of information are independent and take a product
of their probabilities. Recall that Xe = 1 if the pixels corre-
sponding to e lie on a true boundary and 0 otherwise. The
logistic model gives an estimate of P(Xe0 = 1,Xe1 = 1), the
posterior probability that the pair of edges (e0, e1) are both
true. Let S1 and S2 be the two sets of edges connecting to
e0 at the two ends respectively. We define the new boundary
operator PbL under the 2-edge product model to be:

PbL = max
e1∈S1

P(Xe0 = 1,Xe1 = 1)

· max
e2∈S2

P(Xe0 = 1,Xe2 = 1).

We experimented with various additional features, such
as: maximum Pb and minimum Pb of the edge pair, length
of the edges, length of C-edges, region-based similarity (i.e.
brightness and texture similarity between the regions on the
two sides of the edge pair), and whether one or both edges
have an alternative continuation that is better in terms of θ .
These features gave at most a marginal improvement in per-
formance. We do not consider them further in the remainder
of this paper.

We also considered several classifier variants such as: a
second-layer classifier, trained to combine information from
the two ends of e0; a 3-edge classifier which directly takes
as input the features from triples of edges, hence removing
the independence assumption between two pairs; and simul-
taneous 4-way classification on pairs of edges. The simplest
2-edge product model described above performed as well as
any of these variants.
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Fig. 11 Local Ambiguity: A scenario in which completion cannot be
resolved locally. The edge detector reports the same contrast for the
boundary of a closed figure and some background clutter. The local
continuity model can correctly suppress isolated clutter but potential
completions (two dashed/green lines) cannot always be distinguished
locally. Our global model builds a random field over the set of potential
edges which allows for interdependence of neighboring edge decisions

Fig. 12 The factor graph representing our conditional random field
model for global continuity. The CDT provides both the geometric and
graphical structure for our model. Each edge in the CDT corresponds to
a variable Xe (represented by circles) which is 1 if pixels correspond-
ing to edge e constitute a true boundary. Potential functions (squares)
consist of a singleton potential for each edge which encodes the under-
lying Pb measurement and continuity/closure potentials at the vertices
whose values are dependent on both the angles between incoming line
segments and the numbers of C- and G-edges entering a junction. Note
that unlike the graphical models for typical MRF models on a lattice
where potentials correspond to graph edges, this random field includes
potentials involving more than two variables. The factor graph is a
bipartite representation of the resulting hypergraph (see Kschischang
et al. 2001)

4.2 A Random Field Model of Global Continuity

The local model described in the previous section makes
an independent decision for each edge. This model has the
short-coming that the decision of whether an edge e is turned
on or off is only dependent on the local pattern of gradients
but does not depend on whether some neighboring edge, e′,
is turned on. As a result, information about boundary proba-
bility cannot be propagated between CDT edges. Figure 11
gives an example where completion based on such local de-
cisions is ambiguous. In this section we describe a global
probabilistic model that is based on the same image mea-
surements as the local model (Pb,G,θ ) but also captures
the statistical dependencies between neighboring boundary
variables.

Fig. 13 Convergence of Loopy Propagation on CDT Graphs: Here we
show the change in marginal beliefs versus iteration for belief propa-
gation on the BSDS. Each curve shows the maximum absolute change
over all edge marginals for a given image (L∞ norm). The marginals
quickly converge, reaching acceptable accuracies in 10 iterations. Con-
vergence behavior was similarly uniform across the baseball and horse
dataset

Fig. 14 Learning about junctions: a weight is associated with each
junction type (degg,degc), where degg is the number of G-edges
(gradient edges, shown in black) being turned on (shown as thick
lines), and degc the number of C-edges (completion edges, shown
in dashed/green) being turned on. degg +degc = 1 corresponds to the
case of a line ending; degg +degc = 2 a continuation of contour; and
degg +degc = 3 a T-junction. Compare with hand set potentials of Ge-
man and Geman (1984)
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Fig. 15 Pixel-based
precision-recall evaluations
comparing the local classifier
(PbL), global CRF (PbG) and
raw Pb. Both techniques
improve boundary detection on
all three datasets and the overall
ordering of the curves is
generally preserved

A natural probabilistic structure for modeling spatial de-
pendencies is the Markov Random Field (MRF) in which
random variables, representing for example true pixel gray
values, are independent conditioned on some immediate
spatial neighborhood (Besag 1974). In the computer vi-
sion literature, there is a large body of research applying
MRF models to vision problems such as texture, segmen-
tation, de-noising, super-resolution and stereo (see for ex-
ample Geman and Geman 1984; Li 1995; Zhu et al. 1998;
Freeman et al. 2000).

We use a variant on the MRF, introduced by Lafferty et al.
(2001), which is referred to as a conditional random field
(CRF). Unlike generative MRF models that attempt to cap-
ture the joint distribution of image measurements and hidden
labels, a CRF focus directly on the conditional distribution
of labels given the observations. One key advantage from
our perspective is that the observed variables need not be
conditionally independent given the hidden variables. This
allows much greater freedom in choosing model features.

Conditional random fields have been considered as a
method for image segmentation by Kumar and Hebert
(2006), Shental et al. (2003), He et al. (2004), however, the
focus has been on pixel-level labeling which is tied directly

to the image resolution. Moving to scale free, mid-level to-
kens is a key ingredient to handling objects at a continuum
of scales. For example, the multi-scale approach of He et al.
(2004) uses features at three different scales relative to the
image, but the features are different for each scale. To make
such a model scale-invariant requires adding a set of features
for every possible object scale and tying the parameters to-
gether across scales. In our case, because the CDT structure
and input features are approximately scale-invariant, a sim-
ple random field suffices.

We base the independence structure of our edge variables
on the topology given by the CDT. Recall the random vari-
able Xe which is 1 if the pixels corresponding to e lie on
a true boundary and 0 otherwise. Let XV be the collection
of variables for all edges that intersect at a vertex V of the
CDT. We consider log-linear distributions over the collec-
tion of edges of the form

P(X|I,�) = 1

Z(I,�)
e−{∑e φ(Xe|I,�)+∑

V ψ(XV |I,�)}.

Note that the partition function
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Fig. 16 Comparing to two
representative saliency
algorithms: the Markov
stochastic completion model
of (Williams and Jacobs 1997),
adapted to natural images as
in Ren and Malik (2002), which
operates on the pixel-grid; and
the structural saliency algorithm
of (Shashua and Ullman 1988),
which we apply on the CDT
edgels. Our CRF algorithm
performs much better on the
baseball and horse datasets;
none of the algorithms stands
out on the BSDS

Z(I,�) =
∑

X∈X
e−{∑e φ(Xe|I,�)+∑

V ψ(XV |I,�)}

is dependent on the observed image I as well as the collec-
tion of model parameters, �. Figure 12 shows a CDT and the
corresponding factor graph displaying the conditional inde-
pendence structure in this random field.

The energy function φ captures the extent to which the
image evidence I supports the presence of a boundary under
edge e. The edge energy function is given by

φ(Xe|I,�) = −β log(Pbe)Xe

where Pbe is the average Pb recorded over the pixels corre-
sponding to edge e. Continuity conditions at a junction be-
tween contour segments are described by the vertex energy

ψ(XV |I,�) = −
∑

i,j

αi,j 1{degg=i,degc=j}

− γ 1{degg +degc=2}f (θ)

where degg is the number of G-edges at vertex V which
are turned on (i.e. Xe = 1) and similarly degc is the num-
ber of C-edges which are turned on. (degg,degc) indexes

the “junction type” for every possible assignment of XV :
for example, a total degree of one, degg +degc = 1, cor-
responds to a line ending, 2 is a continuation and 3 is a
T-junction. The model associates a separate weight αi,j to
each possible junction type. Figure 14 shows examples of
different junction types and their associated indices. Since
high degree junctions do not occur in the training data, we
do not consider configurations X which result in junctions
with degg > 4 or degc > 4.

When the total degree of a vertex is 2 (exactly two edges
are turned on at a junction), γ weights the continuity of the
two edges. Let θ be the angle formed between them as in
the local model (Fig. 10). To penalize sharp turns, f is a
smooth function which is 1 when θ = 0 and falls off to −1
as θ → π . If the angle θ between the two edges is close to
0, they form a good continuation, −γf (θ) is small and they
are more likely to both be turned on. We use the f given by
the logistic fit for 2-edge local continuity based on angle (as
described in the previous section).

The resulting sum of these terms specifies an energy
for each configuration of the edge variables (e.g. X =
{1,0,0,1,1, . . .} ∈ X ). Low energy (high probability) con-
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Fig. 17 Examples from the
baseball data set. The three
columns of edge maps show the
local boundary detector Pb, our
local model, and our CRF
global model respectively. For
better visualization, the output
of each algorithm has been
thresholded at a level which
yields 2000 boundary pixels

figurations use edges with high Pb, smooth continuations,
and appropriate junction frequencies. In order to gauge the
probability that a given edge e corresponds to a true bound-
ary, we would like to compute its marginal probability under
this model,6 that is

P(Xe = 1|I,�) =
∑

X∈X
Xe=1

P(X|I,�).

6Another possibility would be to find the most probable configuration
X� = arg maxP (X|I,�). We opt instead for use of the marginals in
order to get a “soft” value that can be directly compared to the low-level
Pb over a range of thresholds. Maintaining uncertainty in boundary
detection can also prove useful during further high-level processing
such as recognition.

Unlike the sequence modeling tasks where conditional
random fields were first investigated our graph is not tree
structured. It contains many triangles (among other loops)
resulting in a high tree-width. Performing exact inference of
marginals in such a model has extremely high computational
complexity.

We opt to approximate the edge and vertex degree expec-
tations using loopy belief propagation (Pearl 1988; Weiss
2000). Loopy belief propagation (LBP) has been applied to
many vision problems (Weiss 1997; Freeman et al. 2000;
Sun et al. 2002), typically on the 4-connected pixel lattice.
The connectivity of the CDT graphs we study is much less
uniform than a regular grid. However, in our experiments
belief propagation appears to converge quickly (< 10 iter-
ations) to a reasonable solution. Figure 13 shows the rate
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Fig. 18 More examples from
the BSDS and horse data sets.
Our algorithm outputs smooth,
extended contours on the
foreground and suppresses noise
in the background

of convergence of marginal estimates for the BSDS images.
We suspect that there is relatively little frustration in our po-
tentials and we have never observed any limit-cycle behav-
ior (Murphy et al. 1999).

4.3 Learning Parameters

Our model has the collection of parameters � = {α,β, γ }.
A single generic set of parameter values are learned from a
collection of training images and used on all testing images.
Since we exclude high degree junctions, we only need to set
αi,j for i, j < 4. This leaves a total of 18 free parameters
which we fit by maximum likelihood.

Since our model lies in the exponential family, the likeli-
hood is convex in the parameters. Taking a derivative of the
log likelihood with respect to any parameter yields a differ-
ence of two expectations. For example, the derivative with

respect to the continuation parameter γ for a single training

image/ground truth labeling, (I,X) is:

∂

∂γ
log

(
e−{∑e φ(Xe|I,�)+∑

V ψ(XV |I,�)}

Z(I,�)

)

=
∑

V

∂

∂γ
{γ 1{degg +degc=2}f (θ)}

− ∂

∂γ
logZ(I,�)

=
∑

V

1{degg +degc=2}f (θ)

−
〈∑

V

1{degg +degc=2}f (θ)

〉

P(X|I,�)
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where we have used the fact that derivatives of the log parti-
tion function generate the moment sequence of P(X|I,�).
The first term is the observed sum of f (θ) on degree 2
vertices while the second term is the expectation under the
model given our current setting of the parameters (which
can be estimated using LBP). When the model expectations
match those observed in the training data, we have found the
maximum likelihood setting of the parameters.

Optimization of the parameters can be achieved with any
of several iterative numerical procedures. State-of-the-art
codes based on quasi-Newton schemes typically require the
value of a function in addition to gradients in order to per-
form line searches in promising directions. Although eval-
uating P(X|I,�) for a given X is intractable, its value can
also be estimated using the converged beliefs to compute the
Bethe free energy in place of the true partition function. For
the experiments described here, we found it was sufficient
to use simple gradient descent with a momentum term. Pa-
rameters typically converged after a few hundred iterations.

Figure 14 shows the weights learned for different junc-
tion types. We find that the parameters learned from ground-
truth boundary data match our intuition well. For example,
the weight α1,0 is smaller than α2,0, indicating that line end-
ings are less common than continuation and reflecting the
prevalence of closed contours. For degree 2 vertices, we
find α2,0 > α1,1 > α0,2, indicating that continuation along
G-edges is preferable to invoking C-edges. Since high de-
gree junctions are very uncommon in the training data, their
corresponding α values tend to be uninformative. However,
their impact on the test performance is limited for the same
reason.

5 Results: Is Curvilinear Continuity Useful?

We have described two different algorithms, each outputting
a new estimate of the boundary probability at each pixel:
PbL, the local model on the CDT, and PbG, the global ran-
dom field model. In order to evaluate these, we use three
human-segmented datasets: a set of news photos of baseball
players (Mori et al. 2004) split into 15 training and 15 test-
ing images, images of horses (Borenstein and Ullman 2002)
split into 172 training and 172 test images, and the Berke-
ley Segmentation Dataset (Martin et al. 2002) (BSDS300)
which contains 200 training images and 100 test images of
various natural scenes.

Performance on these datasets is quantified using the
precision-recall framework as in Martin et al. (2004). Fig-
ure 15 shows the precision-recall curves for the three
datasets. These quantitative comparisons clearly demon-
strate that mid-level information is useful in a generic set-
ting. Both models of curvilinear continuity outperform Pb.
The global model, which is able to combine local evidence

of continuity and global constraints such as closure, per-
forms the best.

The improvement is most noticeable in the low-recall/
high-precision range which corresponds to the case of boost-
ing the most prominent boundaries and suppressing back-
ground noise. These boundaries are typically smooth; thus
continuity helps suppress false positives in the background.
This is evident in the examples shown in Fig. 17. We also
find that our models push the asymptotic recall rate much
closer to 100% (without loss in precision), reflecting their
abilities to complete gradient-less gaps.

We observe that the benefit of continuity on the base-
ball player and horse dataset is much larger than that on
the BSDS dataset. One reason may be that the baseball and
horse datasets are harder (note the low precision rates for
Pb) which makes the role of continuity more important.

In Fig. 16 we compare to two representative saliency al-
gorithms: the pixel-based Markovian contour completion al-
gorithm of Williams and Jacobs (1997), adapted to the set-
ting of natural images as in Ren and Malik (2002); and the
iterative updating saliency algorithm of Shashua and Ull-
man (1988). The Williams-Jacobs algorithm operates on the
pixel-grid, with transition probabilities learned from data.
The Shashua-Ullman algorithm is applied on the edgels in
the CDT triangulation. We see that for the baseball and horse
datasets, both algorithms improve edge detection perfor-
mance only marginally, much less effective than our CRF-
based algorithm. For the case of the BSDS, none of the
algorithms stands out; the Williams-Jacobs algorithm does
slightly better at the high-recall end.

If we look at these curves, there still exists a huge gap
in performance between our models and the upper bound
given by the ground-truth labels. It may be that the remain-
ing gap will ultimately be bridged by incorporating high-
level knowledge, i.e. detecting objects in the scene using the
mid-level boundary map and then “cleaning up” the bound-
aries in a top-down fashion. In the case of general datasets
like the BSDS, this will require recognizing thousands of
object categories.

6 Conclusion

We have described two probabilistic models of curvilinear
continuity which have a verifiably favorable impact on the
problem of boundary detection. The local model, though
quite simple, yields a significant performance gain. The
global model, by making long-range inferences over local
continuity constraints, is the most successful in utilizing
mid-level information.

The key step in our approach to modeling continuity
is moving from pixels to the piecewise linear approxima-
tions of contours. Motivated by the ecological statistics of
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human-marked boundaries, this scale-invariant geometric
representation of images shows promising potential for both
mid-level and high-level visual processing. The shift from
100,000 pixels to 1000 Delaunay edges is also important as
it yields huge gains in both statistical and computational ef-
ficiency.

We have shown that the outputs of our algorithms are
quantifiably better than a low-level edge detector on a wide
variety of natural images. We feel strongly that continued
progress in mid-level vision rests on being able to make such
quantitative comparisons between algorithms. Many recent
exciting results in object recognition and stereo reconstruc-
tion could not have occurred without the firm grounding pro-
vided by quantitative evaluation. Work on perceptual orga-
nization should be held to the same high standards.
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