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Abstract: Functional brain imaging is a common tool in monitoring the progression of neurodegenera-
tive and neurological disorders. Identifying functional brain imaging derived features that can accu-
rately detect neurological disease is of primary importance to the medical community. Research in
computer vision techniques to identify objects in photographs have reported high accuracies in that
domain, but their direct applicability to identifying disease in functional imaging is still under investi-
gation in the medical community. In particular, Serre et al. ([2005]: In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR-05). pp 994–1000) introduced a biophysically inspired filtering
method emulating visual processing in striate cortex which they applied to perform object recognition
in photographs. In this work, the model described by Serre et al. [2005] is extended to three-dimen-
sional volumetric images to perform signal detection in functional brain imaging (PET, SPECT). The fil-
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ter outputs are used to train both neural network and logistic regression classifiers and tested on two
distinct datasets: ADNI Alzheimer’s disease 2-deoxy-D-glucose (FDG) PET and National Football
League players Tc99m HMPAO SPECT. The filtering pipeline is analyzed to identify which steps are
most important for classification accuracy. Our results compare favorably with other published classifi-
cation results and outperform those of a blinded expert human rater, suggesting the utility of this
approach. Hum Brain Mapp 00:000–000, 2012. VC 2012 Wiley Periodicals, Inc.

Keywords: object recognition; Gabor filters; template matching; classification; brain imaging; PET;
SPECT; ADNI; Alzheimer’s disease; NFL

r r

INTRODUCTION

Significant progress has been made in the diagnostic de-
cision-making processes and in predicting the onset and the
course of brain disorders [Kantarci and Jack, 2003; Love-
stone, 2010; Rachakonda et al., 2004; Roe et al., 2011]. The
traditional endpoint diagnosis, clinical measurements, and
cognitive tests used in clinical trials have proved to be in-
formative but have their own limitations in accurately
quantifying the progression of brain disorders in an
unbiased and objective manner [Borroni et al., 2007; Knop-
man et al., 2001]. Advances in brain imaging technologies
have enabled researchers to investigate and test novel bio-
markers that could serve either as diagnostic tools to aid
clinical decision-making or as surrogates, reflecting disease
progression and underlying disease pathology [Biomarkers
Definitions Working Group, 2001]. Accordingly, there is a
growing body of evidence in the literature showing that
structural and functional brain imaging can be valuable
tools for predicting and classifying gradually progressive
neurological and psychiatric disorders such as Alzheimer’s
disease (AD) [Drzezga, 2009; Kawachi et al., 2006; Mosconi
et al., 2006; Nordberg et al., 2010; Tartaglia et al., 2011].
Although both PET and MRI imaging modalities have been
found to be discriminative in various neurological disor-
ders, there is disagreement in the community about which
are most sensitive for particular disorders. Specifically, dif-
ferences in sensitivity and specificity of structural magnetic
resonance imaging (MRI) and 2-deoxy-D-glucose (FDG)
positron emission tomography (PET) features in the predic-
tion of early AD has been debated in the literature with no
clear consensus [De Santi et al., 2001; Mosconi et al., 2006].
Nevertheless, AD research studies evaluating the diagnostic
and predictive value of regional specific glucose metabolic
rate and volume changes suggest the greater reliability of
FDG PET over MRI in discriminating AD from subjects
with intact and mild cognitive impairment (MCI) [De Santi
et al., 2001; Kawachi et al., 2006; Mosconi et al., 2006]. How-
ever, De Santi et al. and Mosconi et al. indicate image post-
processing influences the outcome of discriminative
analyses and subsequently, their predictive value.

Although advances in imaging have enabled researchers

to visually inspect both functional and structural brain scans

of disease, it is often difficult for the human observer to

identify the subtle differences in the brain images that are of-

ten necessary for reliable disease classification. Furthermore,

visual identification of brain diseases by a human observer

is time consuming and error prone. Automated image analy-

sis algorithms that can reliably discriminate the diseased

from the healthy brain are preferred because they save time,

are generally less prone to errors, are not influenced by rater

bias or inter-rater differences in neuroanatomical expertise,

and can identify subtle statistical correlations in the data.

For preventative and longitudinal studies in large popula-

tions, automated image analysis is critically important to

evaluate the data. To achieve automated and reliable image

analysis and classification, we can use computer vision tech-

niques that are designed to extract information from images.
Object recognition in images and video is an active area

of research in the computer vision community. Finding
objects is fundamentally related to pattern recognition
where the presence of unique patterns of colors, edges,
and/or textures are consistent with a particular class of
object. Probabilistic models are particularly well suited for
recognition problems because they provide a structured
approach to modeling uncertainty and can be less sensitive
to noise in the data. Object recognition systems often con-
sist of a feature extraction component and a classifier. The
feature extractor is used to identify properties of the objects
that are most important in discriminating one object from
another. The features along with a labeled training set are
then used to train a classifier to map the features into a
class label for each object the detection system is built to
recognize. Although the overall process is simple, there are
many subtleties in real world applications of detection sys-
tems such as object illumination, scale, occlusion, and ori-
entation that affect accuracy. Most often we have a small
set of images representing the objects to be recognized and
do not have exhaustive examples at all possible scales, ori-
entations, illuminations, etc. The challenge is therefore to
find a feature space that avoids irrelevant variations in the
objects and instead captures the most discriminating char-
acteristics [Forsyth and Ponce, 2002].

One source of inspiration for engineering such invariant
features is the primate visual system, which performs
object detection robustly across a huge range of view-
points, illuminations, and occlusions. One very successful
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method, the scale invariant feature transform (SIFT) pro-
posed by Lowe [1999] uses features with partial invariance
to local variations in scale and illumination, similar to the
receptive fields of the neurons in the inferior temporal cor-
tex, an area important for object recognition in primates.
Serre et al. [2005] introduced a filtering method whose hier-
archical architecture was designed specifically to emulate
visual processing in the cat and primate striate cortex. They
applied this method to detecting objects in photographs and
reported high success rates from a few training examples.
Mutch and Lowe [2006] reported similar performance results
using a similar filtering scheme that scaled the input images
instead of the filters as was done in Serre et al.’s work.

Similar to object recognition in photographs, for auto-
mated image-based diagnosis, it is necessary to ignore some
classes of variation across healthy individuals while identify-
ing other specific variations which are indicative of disease
state. Differences in ligand uptake in the brain measured by
functional brain imaging modalities such as FDG PET and
Tc99m HMPAO Single Photon Emission Tomography
(SPECT) result in spatially smooth patterns of differing
intensities which can be used to differentiate a disease group
from healthy subjects. Similarly, precise morphology/anat-
omy may vary among individuals requiring some degree of
local scale and orientation invariance. Based on this insight,
we extend the neurologically inspired filtering model
described by Serre et al. [2005] to signal detection in func-
tional brain imaging. To evaluate how well the Serre et al.’s
feature model works in capturing disease patterns in the
human brain, the model is extended to three-dimensional
volumetric space and signal detection differentiation in func-
tional brain imaging. The hierarchical filtering pipeline is an-
alyzed to identify which steps are most important for
classification accuracy and the filter outputs are used to train
both neural network (NN) and logistic regression (LR) classi-
fiers. Two distinct and previously published datasets are
tested using this feature extraction and classification
method: (1) Alzheimer’s Disease Neuroimaging Initiative
(ADNI) AD FDG PET scans sampled at baseline, 12 months,
and 24 months time-points versus the study-specific age-
matched healthy comparison (HC) subjects [Mueller et al.,
2008]; (2) a Tc99m HMPAO SPECT National Football League
(NFL) dataset versus study-specific age-matched HC sub-
jects [Amen et al., 2011]. The AD classification results are
further compared against a blinded expert human rater

(J.H.F.), providing a baseline measure of how well a human
counterpart can recognize disease in the same dataset.

METHODS

Filtering and Feature Extraction

The image filtering pipeline consists of a series of alter-
nating steps of simple filtering (S layers) and complex filter-
ing (C layers) layers briefly summarized here and
discussed in detail in subsequent sections. The first simple
layer (S1) outputs respond to oriented edges at different
spatial scales and orientations (see S1 Layer). Spatial scales
in this context refer to the underlying spatial distribution of
the signal in the images. Filters with larger spatial scales
will respond to larger (spatially) image signals. S1 layer fil-
ters are separated into ‘‘bands’’ where each band is com-
posed of two similar spatial scales as shown in Table I,
rows 1 and 2. The first complex layer (C1) combines the
outputs from the S1 layer at different scales but within ori-
entations, providing scale invariance (see C1 Layer). The
complex layers pool the simple layer outputs using a max
operator, where the strongest simple layer output drives
the complex layer output. The second simple layer (S2)
matches the detections from the C1 layer against healthy
subjects in a template matching framework where higher
scores indicate a closer match (see C1 Layer Training
Patches and S2 Layer). The second complex layer (C2) com-
bines the outputs from template matching scores across ori-
entations gaining invariance to orientation (see C2 Layer).

S1 layer

The S1 layer is computed by applying 16 orientated
three-dimensional Gabor filters at orientations y [ {0, p/4,
p/2, 3p/4}, f [ {0, p/4, p/2, 3p/4}, and wavelength k to
each brain scan in the dataset. A Gabor filter is a linear fil-
ter whose impulse response is a harmonic function multi-
plied by a Gaussian function:
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TABLE I. S1 layer Gabor filter sizes and parameters by band (rows 1–3) where bands are used to

group similar filter sizes

Band 1 2 3 4 5 6 7 8

Filter 3, 5 7, 9 11, 13 15, 17 19, 21 23, 25 27, 29 31, 33
Sigma 1.4, 2.1 3.0, 3.9 4.6, 5.6 6.5, 7.5 8.5, 9.6 10.6,11.7 12.9,14.1 15.3,16.5
Lambda 1.7, 2.6 3.6, 4.8 5.7, 6.8 8.0, 9.2 10.4,11.8 13.1,14.5 15.9,17.4 18.9,20.5
Max Grid 43 63 83 103 123 143 163 183

Patch 53, 93, 133, 173

Row 4 shows the C1 layer grid size for maximums over Gabor filter scales. Row 5 shows the template patch sizes common to all bands.
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The cosine term in Eq. (1) controls the harmonic compo-
nent through the k wavelength parameter. The variables x,
y, and z are the spatial variables defining the spatial extent
of the filter. The standard deviation r describes the size of
the Gaussian envelope. The orientation of the filter is rep-
resented by variables y and f, where f orients the filter in
the x-y plane and y is the orientation from the positive z
axis. For a detailed description of three-dimensional Gabor
filters, refer to Bau et al. [Bau and Healey, 2009; Bau et al.,
2008]. Frequency and orientation representations of the fil-
ter are similar to those of the human visual system. The
original Serre method performed Gabor filtering in two-
dimensional, consistent with the image matrix of photo-
graphs. In this work, the Gabor filtering was performed in
three-dimensional and applied using filter sizes, sigmas,
and lambdas over a series of eight bands. The parameters
of each band are listed in Table I, rows 2 to 4. The filter
sizes and parameters were kept essentially the same as the
Serre work, but the spatial extents of the bands were
decreased in order to make the features more sensitive to
small activation differences in functional brain imaging.
The relative proportions between sizes across the bands

remained the same. The voxel sizes of the functional brain
imaging data used in this study were 2 mm3 per voxel
(see Methods for a detailed description of the test data).
The smallest filter size in the Serre work (7 pixels) if
directly applied as seven voxels would be unlikely to
respond to small differential signals that could be discrim-
inative in the context of functional imaging and disease.
To avoid missing small signals, the lowest filter band was
set to three voxels. An example of the AD PET scan slices
filtered with the three-dimensional Gabor functions are
shown in Figure 1. Oriented signals are indeed differen-
tially selected by the filters, consistent with our hypothe-
sized responses of the filters when applied to functional
brain imaging data.

C1 layer

The C1 layer combines incident S1 units of the same y
and f orientations, creating tolerance to size and shift
within Gabor filter orientation. Complex cells in the hier-
archical visual cortex model have larger receptor fields
than the S1 layer [Serre et al., 2005]. To operationalize this

Figure 1.

Examples of Gabor filtered slices. For each example, the filter

size, r, and k remained constant at 53, 2.1, and 2.6, respectively

while the orientation parameters y and f were varied. A) y ¼ 0,

f ¼ 0; B) y ¼ p/4, f ¼ p/4; C) y ¼ p/2, f ¼ p/4; D) y ¼ 3p/4,

f ¼ p/4. The maximum filter responses are shown in red. As the

orientation of the filters change (A–D), signals of similar orienta-

tions are selected by the filter. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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relationship, the S1 layer volumes are filtered with a max
operator over Gabor filter scales (Table I, row 1(filter)), but
within each orientation band (columns of Table I). Max fil-
tering is a nonlinear image processing technique where
the value at each voxel in the filtered image is the maxi-
mum of the input image voxels in a local neighborhood
defined by the filter size. The filter size over which the
maximums are calculated depends on the Gabor filter size
(shown in Table I, row 4 (max grid)). Gabor filters with
larger spatial scales will respond more strongly to larger
(spatially) signals in the images at the same y and f orien-
tations, therefore, the corresponding max filter sizes
should be tuned accordingly. These operations are per-
formed for each Gabor orientation and for each band
resulting in 16 � 8 volumes, representing maximums over
scales but within orientations. Due to the large numbers of
voxels in the volumes and thus the large numbers of max
operations over increasing neighborhoods, we used the
algorithm developed by Van Herk et al. [1992] to effi-
ciently compute the maximums over neighborhoods for
each voxel in the S1 layer volumes. The method requires
only a small number of operations per voxel to compute
the maximums and lowers the computational time of this
stage of the processing pipeline.

C1 layer training patches. Template matching is a com-
mon approach to object recognition in computer vision
systems. It is a technique which matches image regions to
stored representative templates using a specific scoring
function [Brunelli, 2009]. In this work, representative tem-
plates were collected on a random subset of hold-out
healthy subjects to be used in the subsequent S2 layer tem-
plate-matching step. Ten randomly selected hold-out train-
ing images were chosen for template extraction. Templates
were extracted randomly across these training images and
from random locations within the images but constrained
to fall within the boundaries of user specified regions of
interest (see The Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI)). The regions from which templates are ran-
domly sampled are completely user defined and could be
chosen based on some a priori hypothesis or from the lit-
erature. Selecting templates from specific regions of inter-
est in the brain is similar to learning that a car is
characterized by particular features in spatial locations,
e.g. rides on four tires, has doors on the sides, a hood on
the front, etc.

Operationally, the user selects regions of interest and
the number of features before pipeline execution. We uni-
formly divide the number of random locations across the
number of regions of interest. To generate the random
voxel locations within a region of interest, we use an atlas
labelmap, which assigns a numerical code to each atlas
region. Each atlas region is therefore defined by all the
contiguous voxels in the labelmap volume that have equal
numerical codes. From this information, we can find the
cube containing this region. We then use rejection sam-
pling: drawing a random point uniformly within the cube,

we accept it if it falls within the bounded region; other-
wise we reject and try again. This process continues until
the required number of locations has been found for each
region. In our experiments, 50 or 100 templates were cho-
sen to describe the low level representation of the brain
images. We chose the two sets such that we had a reasona-
ble number of templates per region of interest selected
and so we could evaluate the dependence of the classifica-
tion results on the number of feature scores used. The
original Serre work suggests a modest dependence of per-
formance on the number of feature scores used. For each
selected template location, 53, 93, 133, and 173 voxel
‘‘patches’’ were extracted from each of the 16 Gabor filter-
ing orientations and bands from the C1 layer of the 10 ran-
domly selected hold-out healthy subject training images.
These patches are simply contiguous sets of voxels of dif-
fering spatial extents (53, 93, 133, and 173) centered on the
template location and effectively give the vision system a
‘‘memory’’ of image feature examples from the functional
brain images of healthy subjects.

S2 layer

The S2 layer corresponds to the template-matching
phase of the pipeline. For each C1 image in the test dataset
and for each template patch collected from the hold-out
healthy subject data, we compare the Gaussian radial basis
function score shown in Eq. (2) for each band independ-
ently. The S2 unit’s response depends on the Euclidean
distance between the test dataset patch (X) and the stored
prototype patch (P) sampled at the same location, scale,
and orientation. If the functional activity profile in the test
data is identical to the stored template patch, the score
equals 1 whereas if the differences from the stored tem-
plate patch are large, the score approaches 0. The parame-
ter c normalizes for different patch sizes (n [ {5, 9, 13, 17})
when computing the score in Eq. (2). The parameter c is
fixed to (n/5)3 where n is the patch size and the denomi-
nator is the smallest patch size. The parameter r in Eq. (2)
is the uncertainty or variance in the stored prototype patch
(P). This parameter was set to 1 in all experiments. Alter-
natively, it could be set to the empirical variance of the
training prototype patches discussed in C1 Layer Training
Patches.

FðXh;/;Ph;/Þ ¼ exp �|Xh;/ � Ph;/|2

2r2c

8
>>>:

9
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C2 layer

The final layer in the pipeline computes the maximum
response of the S2 layer scores from all bands and orienta-
tions for each prototype template. The final feature sets
therefore consist of 50 or 100 shift and scale invariant
scores (i.e., for 50 and 100 prototype patches) that are sub-
sequently used for classification. Conceptually, for each
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test image, for each prototype template patch sampled
from a brain region, we are using the score that indicates
the best match between the test image and a healthy sub-
ject regardless of signal size and orientation. We expect
that subjects with neurological disorders will match less
well with the healthy subjects and thus have a lower score.
The final size of the feature vector therefore depends only
on the number of patches extracted during training and
not on the number of voxels in the full three-dimensional
brain image. This allows the user to balance the number of
template patches sampled during patch selection (i.e. num-
ber of features) and the number of subjects available in the
dataset. Flexibility in choosing the number of features pro-
vides insulation from classifier overfitting, which can occur
if the number of features greatly exceeds the number of
examples.

Evaluation

We used two datasets to evaluate the approach. Both
are functional imaging datasets but distinctly different
modalities. We selected these datasets to evaluate the gen-
erality of this approach and its application to distinctly
different neurological abnormalities.

The Alzheimer’s Disease Neuroimaging

Initiative (ADNI)

ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Adminis-
tration (FDA), private pharmaceutical companies, and non-
profit organizations as a $60 million, 5-year public–private
partnership. The primary goal of ADNI is to test whether
serial MRI, PET, other biological markers, such as cerebro-
spinal fluid (CSF) markers, Apolipoprotein E (APOE) sta-
tus, and full-genome genotyping via blood sample, and
clinical and neuropsychological assessments can be com-
bined to measure the progression of MCI and AD. Deter-
mination of sensitive and specific markers of very early
AD progression is intended to: (1) aid in the development
of new treatments, (2) increase the ability to monitor their
effectiveness, and (3) reduce the time and cost of clinical
trials. The principal investigator of the initiative is Michael
W. Weiner, M.D., of the Veteran’s Affairs Medical Center
and University of California, San Francisco. ADNI is the
result of efforts of many coinvestigators from a broad
range of academic institutions and private corporations,
and participants have been recruited from over 50 sites
across the U.S. and Canada. ADNI participants range in
age from 55 to 90 years and include approximately 200
cognitively normal elderly followed for 3 years, 400 elderly
with MCI followed for 3 years, and 200 elderly with early
AD followed for 2 years. Participants are evaluated at
baseline, 6, 12, 18 (for MCI only), 24, and 36 months (AD
participants do not have a 36-month evaluation). Baseline

and longitudinal follow-up structural MRI scans are col-
lected on the full sample and 11C-labeled Pittsburgh Com-
pound-B (11C-PIB) and FDG PET scans are collected on a
subset of every 6 to 12 months (for study details see
http://www.adni-info.org). A subset of these data were
published in Mueller et al. [2008] and Langbaum et al.
[2009] was used in this analysis.

AD dataset

The dataset used in this study consisted of 154 baseline
FDG PET scans acquired as part of the ADNI study and
published in Mueller et al. [2008] and Langbaum et al.
[2009]. There were 82 HC subjects (mini-mental state exam
(MMSE) 28.6 � 1.1; age 75.1 � 9.6 yr) and 72 AD subjects
(MMSE 23.2 � 3.5; age 75.1 � 11.2 yr) from the baseline
ADNI sample used for this study. The 12m and 24m
ADNI samples contained a subset of the baseline dataset
due to subject dropout. The 12m sample included 72 HC
subjects (MMSE 29.2 � 1.2; age 77.5 � 8.4 yr) and 61 AD
subjects (MMSE 20.9 � 4.9; age 75.4 � 11.8 yr). The 24m
sample included 68 HC subjects (MMSE 28.6 � 3.7; age
76.0 � 10.2 yr) and 33 AD subjects (MMSE 18.4 � 6.1; age
74.6 � 15.2 yr). The acquisition protocol consisted of col-
lecting six 5-min frames 30 to 60 min post-18FDG injection.
During the uptake period subjects were asked to rest com-
fortably in a dimly lit room with their eyes open. The col-
lected frames were registered to the first frame (acquired
at 30–35 min postinjection) and averaged to yield a single
30 min average PET image in ‘‘native’’ space. The image
matrix, field of view, and resolution of the datasets from
participating sites were then matched by the ADNI group.
The images were spatially normalized to the MNI atlas
using SPM8 software (2007) resulting in image matrices of
79 � 95 � 68 voxels in x, y, and z dimensions, respectively
with isotropic 23 mm voxel sizes. The Automated Anatom-
ical Labeling (AAL) atlas was used to constrain the region
of interest selection based on the anatomical parcellations
available in the atlas [Tzourio-Mazoyer et al., 2002]. The
AAL atlas used to define the region of interest boundaries
is consistent with the space defined by the MNI atlas.

Coordinates for template patch sampling and S2 layer
matching scores were constrained to fall within regions
identified in the literature to be affected by AD (see C1
Layer Training Patches and S2 Layer). Delacourte et al.
identified stages of AD neurofibrillary degeneration in
patients of various ages and different cognitive statuses
[1999]. Further, Langbaum et al. [2009] identified regions
of reduced metabolic rates in AD. Regions included the
cingulate cortex, parietal and temporal lobes, among
others. For this study, we chose AAL atlas regions (bilat-
eral): anterior and posterior cingulum, temporal lobes
(middle), hippocampus, amygdala, thalamus, frontal and
orbital cortices (superior and middle), temporal pole
(superior, middle, inferior), and parietal lobe (inferior) as
being consistent with published findings on potentially
discriminative regions.
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NFL dataset

The NFL dataset used in this study consisted of 162
technetium-99m hexamethylpropyleneamine oxide (Tc99m
HMPAO) SPECT scans acquired for a study evaluating the
impact of playing American football by Amen et al. [2011].
There were 83 HC (age 41.7 � 17.8 yrs) and 79 NFL (age:
57.5 � 11.5 yr) subjects. Subjects were injected with an
age/weight appropriate dose of Tc99m HMPAO and per-
formed the Conners’ Continuous Performance test II for 30
min during uptake. All subjects completed the task and
were subsequently scanned on a high-resolution Picker
Prism 3000 triple-headed gamma camera with fan beam
collimators. The original reconstructed image matrices
were 128 � 128 � 29 voxels with sizes of 2.16 mm � 2.16
mm � 6.48 mm. The images were spatially normalized to
the MNI atlas using SPM8 software (2007) resulting in
image matrices of 79 � 95 � 68 voxels in x, y, and z
dimensions, respectively with isotropic 23 mm voxel sizes.
Images were smoothed using an 8-mm FWHM isotropic
Gaussian kernel. The preprocessing steps were identical to
the previously published work by Amen et al. In the pre-
viously published work, a subset of the HC dataset was
used and matched on gender and race. For this work, all
subjects were used regardless of race and gender.

Coordinates for template patch sampling and S2 layer
matching scores (see C1 Layer Training Patches and S2
Layer) were constrained to fall within regions identified in
Amen et al. as the top discriminating regions for the NFL
group. To our knowledge, the Amen study was the first
brain imaging study evaluating NFL players and as such,
the regions were picked based only on that publication.
For this study, we used AAL atlas regions (bilateral): ante-
rior and posterior cingulum, frontal pole, hippocampus,
amygdala, and temporal pole (middle and inferior).

Ethics

The NFL study was approved by each of the participat-
ing sites’ Institutional Review Boards (IRBs) and complied
with the Code of Ethics of the World Medical Association
(Declaration of Helsinki). Written informed consent was
obtained from all participants after they had received a
complete description of the studies.

The ADNI data were previously collected across 50
research sites. Study subjects gave written informed con-
sent at the time of enrollment for imaging and genetic
sample collection and completed questionnaires approved
by each participating sites’ Institutional Review Board
(IRB).

Feature sets

In order to identify which components of the feed-for-
ward hierarchical model implemented in this study were
most important in correct classification, three separate
feature sets were computed. The FTM (Gabor filter þ

template match) feature set is the result of the full hier-
archical pipeline as described in Methods. In order to
understand the effect of the Gabor filtering, the TM (tem-
plate matching) dataset was created using the same proce-
dures outlined in Methods without Gabor filtering. More
precisely, the dataset consists of selecting template patches
from the unfiltered images (neither S1 nor C1 layers) and
performing the computations in the S2 and C2 layers. To
evaluate the effect of template matching, the AP (average
patch) feature set consists of simply averaging the voxels
in the neighborhood around the prototype patch locations
selected in C1 Layer Training Patches, across the various
filter sizes (Table I, row 2) and taking the maximum
response.

To compare the feature sets of the hierarchical model
with more typical data reduction (DR) techniques, the
maximum group difference (MaxT) and DR sets were
computed. The MaxT feature set is computed by perform-
ing a typical voxel-wise independent, two-sample t-test in
the SPM8 software. The resulting SPM(t) maps were then
thresholded at P < 0.01 (AD baseline), P < 0.001 (AD
12m), P < 0.001 (AD 24m), and P < 1e-6 (NFL) and cor-
rected for multiple comparisons using the family-wise
error rate (FWE) correction. Probability thresholds were
chosen to limit the number of voxels in the resulting t-
score maps such that similar numbers of voxels were
obtained for each data set (�3K points). The absolute val-
ues of the resulting t-scores were ranked and the data
from the top 50 and 100 locations were then sampled from
each subject and used for classification (MaxT). The DR
feature set used all the locations found in the group differ-
ence maps, discussed above, after probability thresholding
(�3K points), sampling the original data at those locations
(�3K points) for each subject. The resulting N � K matrix
(N subjects, K sampling locations) was mean-centered for
each column K and run through principal components
analysis (PCA). Each subject’s data was then projected
onto the eigenvectors of the top 50 and 100 largest eigen-
values from the PCA decomposition giving a low dimen-
sional representation with 50 or 100 feature scores that
were subsequently used for classification. The top 50 and
100 largest eigenvectors were chosen so that the projected
dataset contained 50 and 100 scores per subject, consistent
with the number of feature scores calculated from the full
feed-forward hierarchical model.

Classification

Classification was done using both a multilayered per-
ceptron NN and a LR classifier to understand the depend-
ence of the results on the classifier chosen [Hall et al.,
2009]. Each classifier was trained separately on the same
datasets to compare the performance of the simpler LR
classifier, able to find linear decision boundaries, with the
NN classifier, able to model more complex nonlinear func-
tions. The NN was constructed with one hidden layer
(hidden layer nodes ¼ (#features þ #classes)/2) and
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trained with a learning rate of 0.3 and a momentum of 0.2.
For each classifier, 10-fold cross validation was used. The
dataset was divided in each fold into training and testing
subsets. The classifier was trained using the training sub-
set and tested on the testing subset. This process was
repeated 10 times. Areas under the receiver operating
characteristic (ROC-AUC) curves were computed from the
probability of class membership of the testing data from
each of the trained classifiers. The full filtering pipeline
(FTM) ROC-AUC curves were statistically compared with
each of the alternative methods for each dataset and classi-
fier using the DeLong et al. [1988] method of comparing
areas under correlated ROC curves as implemented in the
pROC package [Robin et al., 2011]. To compute 95% confi-
dence intervals and statistics, the data were resampled
2,000 times, stratified by group membership.

To compare the classifier results on the baseline AD
dataset with the visual ratings of neuroanatomist (J.H.F.),
true-positive (TP) and false-positive (FP) rates were calcu-
lated. To calculate the TP and FP rates, the probability of
class membership from the trained classifiers for each test-
ing subset data point, in each fold, was computed. The
data point was assigned to the class with the largest prob-
ability. The TP rate was the proportion of examples in the
testing subsets that were classified as class AD, among all
testing examples that were originally labeled as class AD.
The TP rate is the average across all folds. The FP rate
was the proportion of examples in the testing subsets that
were classified as class AD, but were originally labeled as
the alternative class, among all testing examples which are
not of class AD. The FP rate is the average across all folds.
The TP and FP results for Dr. Fallon were computed from
his designation of either AD or healthy control for each of
the baseline data compared with the original class labels.

RESULTS

To summarize the performance of each classifier, the
ROC-AUC results for the Alzheimer’s disease (AD) base-
line, 12m, and 24m datasets are shown in Figures 2–4,
respectively for 50 and 100 feature datasets and both LR
and NN classifiers. The confidence intervals for each ROC-
AUC and statistical comparisons of the FTM with each of
the other methods for all classifiers and datasets are
shown in Tables II–IV. The FTM method outperformed the
other methods in terms of ROC-AUC in 80% of the tests,
and was statistically better in 35%. No other method was
statistically better than FTM; although, the PCA DR strategy
in the 50-feature, baseline AD, LR classifier was close (P <
0.064). Overall, the NN classifier generally outperformed
the LR classifier in ROC-AUC. Further, the FTM method
was statistically better than all other methods in 46% of the
NN classification experiments compared with 25% using
the LR classifier, suggesting a benefit of using the more so-
phisticated classifier with the FTM method. There was a
small, nonsignificant, increase on average in ROC-AUC

over all the classifiers in the results using the larger 100 fea-
ture datasets. Overall performance of the FTM trained clas-
sifiers were consistent with other published classification
results (see Discussion) using the ADNI dataset, with maxi-
mum ROC-AUC at baseline of 0.962 � 0.025 (NN, 100 fea-
ture), at 12m of 0.837 � 0.073 (NN, 100 feature), and at 24m
of 0.878 � 0.070 (NN, 100 feature).

Neuroanatomist (J.H.F.) was given the baseline AD data-
set images in transaxial, coronal, and sagittal orientations,
without the diagnosis and given no practice set of normal
or ADs to examine before the analysis, and asked to clas-
sify the scans as either AD or HC. These results are only
available for the baseline AD data due to the significant
effort in manually rating so many scans. J.H.F. achieved a
true/false-positive rate for AD of 0.718/0.380 and for the
HC group of 0.671/0.244 as shown in Table VI. The FTM
classifier performed better in both true/false positives for
both AD and HC groups while also outperforming the
MaxT and DR methods, further suggesting the potential
utility of this approach.

The AUC results for the NFL group are shown in Figure
5 for 50 and 100 feature datasets and both LR and NN
classifiers. The confidence intervals for each ROC-AUC
and statistical comparisons of the FTM with each of the
other methods for all classifiers and datasets are shown in
Table V. Interestingly, unlike the AD dataset, the FTM
method did not dominate the others, outperforming the
other methods in 44% of the tests and was statistically bet-
ter in only one. Alternatively, the MaxT method consis-
tently outperformed the others in terms of ROC-AUC and
was statistically better than the FTM method in three out
of four comparisons. We speculate this result is related to
specific brain functional changes accompanying repeated
head injuries evident in the NFL dataset (see Discussion).
Overall performance of the FTM classifier was still quite
good with maximum ROC-AUC of 0.939 � 0.037/0.145
(LR, 100 features). Unlike the AD experiments, the NN
classifier did not outperform the LR classifier for the FTM
dataset but did for the best performing MaxT dataset.

DISCUSSION

The overall classification results suggest the biophysi-
cally inspired feed-forward hierarchical model used in
these experiments is sensitive to differences in functional
brain imaging data. Both AD and NFL classification
experiments showed impressive ROC-AUC rates using a
method not specifically tuned for these imaging modal-
ities. The FTM results are consistent with published classi-
fication rates for the ADNI AD data set using brain
imaging; although, most reported results use a mix of
structural and functional imaging features. For example,
Hinrichs et al. used the ADNI dataset in a spatially aug-
mented boosting framework and reported an ROC-AUC of
0.8716 when using just FDG PET [Hinrichs et al., 2009].
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Figure 2.

Area under the ROC curve for AD classification of the ADNI baseline data set for logistic

regression (LR) and neural network (NN) classifiers for both 50 and 100 feature datasets (MaxT

¼ maximum t-score, DR ¼ PCA data reduction, AP ¼ average patch, TM ¼ template matching,

FTM ¼ Gabor filtering þ template matching). The FTM method outperforms the others in 94%

of the cases and is statistically better in 50% of the cases.

TABLE II. Results from the AD ROC-AUC analysis of the ADNI baseline data

Dataset (#feat) Classifier Method ROC-AUC 95% Conf
z-Score

(XAUC � FTMAUC)
P (FTMAUC ¼

XAUC)

FTM 0.791 0.857–0.725
TM 0.644 0.721–0.567 �3.259 0.001

AP 0.729 0.801–0.657 �1.556 0.120
DR 0.861 0.919–0.803 1.854 0.064

MaxT 0.692 0.768–0.616 �2.187 0.029

AD-Bas (50) NN
FTM 0.928 0.970–0.886
TM 0.783 0.858–0.709 �4.321 1.55E-04

AP 0.902 0.951–0.854 �1.132 0.258
DR 0.905 0.952–0.858 �0.833 0.405

MaxT 0.777 0.855–0.698 �3.661 2.51E-04

AD-Bas (100) LR
FTM 0.763 0.832–0.694
TM 0.689 0.766–0.612 �1.761 0.078
AP 0.713 0.832–0.694 �1.320 0.187
DR 0.698 0.775–0.620 �1.604 0.109

MaxT 0.687 0.761–0.614 �1.574 0.115
AD-Bas (100) NN

FTM 0.962 0.987–0.938
TM 0.644 0.722–0.567 �8.623 2.20E-16

AP 0.885 0.940–0.831 �3.336 8.50E-04

DR 0.678 0.763–0.594 �6.697 2.13E-11

MaxT 0.773 0.849–0.696 �5.053 4.35E-07

The table lists ROC-AUC measurements, 95% confidence intervals, z-scores, and probabilities for comparisons of the FTM method with
the other methods within each dataset and classifier combination. Negative z-scores indicate methods that are lower in ROC-AUC than
the FTM method. Significant differences are highlighted in bold.
MaxT ¼ maximum t-score, DR ¼ PCA data reduction, AP ¼ average patch, TM ¼ template matching, FTM ¼ Gabor filtering þ
template matching.



Figure 3.

Area under the ROC curve for AD classification of the ADNI 12m data set for logistic regres-

sion (LR) and neural network (NN) classifiers for both 50 and 100 feature datasets (MaxT ¼
maximum t-score, DR ¼ PCA data reduction, AP ¼ average patch, TM ¼ template matching,

FTM ¼ Gabor filtering þ template matching). The FTM method outperforms the others in 88%

of the cases and is statistically better in 38% of the cases.

TABLE III. Results from the AD ROC-AUC analysis of the ADNI 12m data

Dataset (#feat) Classifier Method ROC-AUC 95% Conf
z-Score

(XAUC � FTMAUC) P (FTMAUC ¼ XAUC)

AD-12m (50) LR
FTM 0.778 0.851–0.705
TM 0.664 0.747–0.582 �2.173 0.030

AP 0.756 0.831–0.682 �0.499 0.618
DR 0.726 0.805–0.648 �1.060 0.289

MaxT 0.609 0.701–0.518 �2.830 0.005

AD-12m (50) NN
FTM 0.825 0.898–0.753
TM 0.781 0.862–0.701 �0.952 0.341
AP 0.838 0.908–0.769 0.319 0.750
DR 0.771 0.854–0.689 �1.292 0.196

MaxT 0.681 0.776–0.585 �2.371 0.019

AD-12m (100) LR
FTM 0.759 0.835–0.683
TM 0.648 0.734–0.561 �2.166 0.030

AP 0.699 0.781–0.618 �1.210 0.226
DR 0.676 0.763–0.588 �1.546 0.122

MaxT 0.671 0.754–0.588 �1.532 0.127
AD-12m (100) NN

FTM 0.837 0.910–0.764
TM 0.783 0.861–0.706 �1.411 0.158
AP 0.855 0.919–0.791 0.590 0.555
DR 0.714 0.802–0.627 �2.234 0.022

MaxT 0.687 0.780–0.594 �2.482 0.014

The table lists ROC-AUC measurements, 95% confidence intervals, z-scores, and probabilities for comparisons of the FTM method with
the other methods within each dataset and classifier combination. Negative z-scores indicate methods that are lower in ROC-AUC than
the FTM method. Significant differences are highlighted in bold.
MaxT ¼ maximum t-score, DR ¼ PCA data reduction, AP ¼ average patch, TM ¼ template matching, FTM ¼ Gabor filtering þ
template matching.



TABLE IV. Results from the AD ROC-AUC analysis of the ADNI 24m data

Dataset (#feat) Classifier Method ROC-AUC 95% Conf
z-Score

(XAUC � FTMAUC) P (FTMAUC ¼ XAUC)

AD-24m (50) LR
FTM 0.749 0.843–0.655
TM 0.658 0.763–0.553 �1.437 0.151
AP 0.794 0.886–0.702 0.794 0.427
DR 0.828 0.915–0.740 1.371 0.171

MaxT 0.787 0.902–0.673 0.502 0.616
AD-24m (50) NN

FTM 0.841 0.924–0.758
TM 0.883 0.955–0.810 0.991 0.322
AP 0.865 0.942–0.788 0.736 0.462
DR 0.816 0.915–0.717 �0.459 0.646

MaxT 0.766 0.861–0.670 �1.335 0.182
AD-24m (100) LR

FTM 0.822 0.906–0.737
TM 0.823 0.906–0.740 0.026 0.979
AP 0.822 0.892–0.716 �0.319 0.75
DR 0.561 0.426–0.696 �4.620 3.84E-06

MaxT 0.813 0.915–0.710 �0.143 0.886
AD-24m (100) NN

FTM 0.878 0.948–0.806
TM 0.864 0.944–0.783 �0.383 0.702
AP 0.880 0.957–0.804 0.102 0.919
DR 0.677 0.788–0.566 �8.214 2.20E-16

MaxT 0.758 0.860–0.656 �2.273 0.023

The table lists ROC-AUC measurements, 95% confidence intervals, z-scores, and probabilities for comparisons of the FTM method with
the other methods within each dataset and classifier combination. Negative z-scores indicate methods that are lower in ROC-AUC than
the FTM method. Significant differences are highlighted in bold.
MaxT ¼ maximum t-score, DR ¼ PCA data reduction, AP ¼ average patch, TM ¼ template matching, FTM ¼ Gabor filtering þ
template matching.

Figure 4.

Area under the ROC curve for AD classification of the ADNI 24m data set for logistic regres-

sion (LR) and neural network (NN) classifiers for both 50 and 100 feature datasets (MaxT ¼
maximum t-score, DR ¼ PCA data reduction, AP ¼ average patch, TM ¼ template matching,

FTM ¼ Gabor filtering þ template matching). The FTM method outperforms the others in 56%

of the cases and is statistically better in 19% of the cases.



A benefit of using LR classifiers is the clear interpreta-
tion of which features are most informative for classifica-
tion. For baseline AD classification, the four most
informative patches (highest weights) were sampled from
AAL atlas regions right hippocampus and superior tempo-
ral lobes left and right while the posterior cingulate, a region
commonly associated with disease progression, ranked
fourth. For 12m AD classification the most informative
patches were sampled from frontal superior right, frontal
superior orbital left, and the temporal pole superior right.
For 24m AD classifications the most informative patches
were sampled from the frontal superior right, temporal pole
mid left, and hippocampus left. It is interesting that the
frontal lobe was not included as a top discriminating loca-
tion in the baseline data set but was in both the 12m and
24m data, consistent with well-known structural changes in
AD disease progression. We also evaluated the performance
of the FTM features using ROIs that specifically did not
include those selected in AD dataset. The results were on
average 10 to 15% lower in ROC-AUC for baseline AD than
those reported in the Results, suggesting this method is sen-
sitive to region of interest selection. Therefore we suspect
the filtering pipeline could be used to test competing
hypotheses about specific regions of interest implicated in

disease. The top three most informative patches from the
features evaluated using ROIs that specifically did not
include those selected in AD dataset, were sampled from
AAL atlas regions frontal inferior orbital left, insula right,
and occipital middle right. Other informative patches for
AD included the supramarginal right, lingual right, and
frontal inferior operculum left. Interestingly, the frontal in-
ferior orbital, operculum, and the supramarginal gyrus are
all associated with AD in the literature suggesting the classi-
fication results are still picking up on areas related to the
disease [Espasy and Jacobs, 2010; Grignon et al., 1998].

Overall, the average patch (AP) feature set outper-
formed the template matching (TM) feature set, suggesting
no compelling benefit of template matching without Gabor
filtering in this application. The utility of oriented Gabor
filtering and template matching in deriving the feature set
was most evident in AD classification. This trend was not
observed for the NFL classification experiments. Why
would oriented filtering improve classification rates in AD
and not the NFL data set? It is well known in the litera-
ture that structural changes in AD follow an anatomical
trajectory starting in entorhinal cortex and hippocampus,
then moving to temporal and parietal lobes, and finally
affecting the frontal lobes in late stage AD [Braak and

Figure 5.

Area under the ROC curve for NFL classification for logistic

regression (LR) and neural network (NN) classifiers for both 50

and 100 feature datasets (MaxT ¼ maximum t-score, DR ¼
PCA data reduction, AP ¼ average patch, TM ¼ template

matching, FTM ¼ Gabor filtering þ template matching). The

MaxT method outperformed the other methods, statistically

better than the FTM method in all comparisons except in the

LR-50 feature dataset. The FTM ROC-AUC was still very good,

always greater than 0.900 and as high as 0.939 in the NN-100

feature dataset.
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Braak, 1997; Hua et al., 2008; Thompson et al., 2003]. These
structural changes should be reflected in corresponding
functional changes. In addition, the accumulation of amy-
loid plaques between nerve cells in the brain is known to
be a hallmark of AD. Both the structural changes and pla-
ques may be altering the functional brain imaging derived
signal in orientation, scale, and localized spatial extent
due, in part, to brain plasticity and compensation.

Alternatively, the FTM might not perform as well in
data sets with widespread, global functional changes
observed in the NFL data. Indeed the article by Amen
et al. reports ‘‘significant decreases in regional cerebral
blood flow were seen across the whole brain.’’ The com-
parison feature sets MaxT and DR should perform well in
that setting because they rely on group differences and
maximal variation. It is possible that the FTM method per-
forms better in settings with more localized functional dif-
ferences. The NFL dataset differed from the AD dataset in
both imaging modality (SPECT vs. PET) and uptake condi-
tions (continuous performance test vs. rest), which could
contribute to the differences in classifier performance. We
suspect modality is not a factor as the feature scores used
in classification are modality neutral. Lower resolution
imaging systems may contribute to lower true-positive

rates if the regions of interest are small in size, despite the
model’s attempt to mitigate this effect using filter sizes of
differing spatial scales. Regardless of how well the filtering
method does, if the discriminating feature of a disease is
too small to be accurately measured by the imaging de-
vice, performance of the classification system will
undoubtedly suffer. The benefit of this method is that it

TABLE V. Results from the NFL ROC-AUC analysis

Dataset (#feat) Classifier Method ROC-AUC 95% Conf
z-Score

(XAUC � FTMAUC) P (FTMAUC ¼ XAUC)

NFL (50) LR
FTM 0.909 0.954–0.864
TM 0.702 0.777–0.628 �4.662 5.09E-06

AP 0.876 0.931–0.821 �0.907 0.365
DR 0.942 0.979–0.906 1.137 0.255

MaxT 0.956 0.988–0.924 2.059 0.040

NFL (50) NN
FTM 0.908 0.957–0.860
TM 0.856 0.917–0.795 �1.306 0.193
AP 0.933 0.974–0.893 0.776 0.438
DR 0.974 0.995–0.954 2.405 0.016

MaxT 0.986 1.000–0.969 2.944 0.003

NFL (100) LR
FTM 0.939 0.976–0.902
TM 0.877 0.931–0.822 �1.856 0.065
AP 0.883 0.936–0.830 �1.705 0.089
DR 0.900 0.947–0.853 �1.315 0.188

MaxT 0.977 1.000–0.954 1.753 0.080
NFL (100) NN

FTM 0.920 0.964–0.876
TM 0.954 0.989–0.918 1.167 0.245
AP 0.942 0.977–0.907 0.765 0.445
DR 0.892 0.941–0.842 �0.866 0.386

MaxT 0.988 1.000–0.973 2.900 0.004

The table lists ROC-AUC measurements, 95% confidence intervals, z-scores, and probabilities for comparisons of the FTM method with
the other methods within each dataset and classifier combination. Negative z-scores indicate methods that are lower in ROC-AUC than
the FTM method. Significant differences are highlighted in bold.
MaxT ¼ maximum t-score, DR ¼ PCA data reduction, AP ¼ average patch, TM ¼ template matching, FTM ¼ Gabor filtering þ
template matching.

TABLE VI. Results from the visual ratings of

neuroanatomist J.H.F. from the ADNI baseline data

Method AD-TP AD-FP HC-TP HC-FP

J.H.F 0.718 0.380 0.671 0.244
FTM 0.875 0.122 0.878 0.125
DR 0.622 0.389 0.611 0.378
MaxT 0.829 0.375 0.625 0.171

The table lists true-positive (TP) and false-positive (FP) values for
the Alzheimer’s disease (AD) and healthy control (HC) classes
compared with the FTM, DR, and MaxT methods. The FTM
method outperforms both the human rater and the other
methods.
MaxT ¼ maximum t-score, DR ¼ PCA data reduction, FTM ¼
Gabor filtering þ template matching.
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uses information across spatial scales, orientations, and
locations in the volumes to calculate the matching scores
used for subsequent classification and should therefore be
less reliant on any one discriminating feature. The uptake
task will contribute to the functional signals and should be
taken into account when selecting the regions of interest to
calculate feature scores (C1 Layer Training Patches).
Choosing regions that are absolutely not affected by the
disease will decrease the discriminative power of the
method. Alternatively, if the number of subjects in the
dataset is high and there is no fear of classifier overfitting,
choosing many regions, some known to be related to the
disease and/or task and others whose relationship is
unknown could provide interesting insight into whether
the unknown regions are contributing to classification ac-
curacy. Further, because the features of the dataset are
computed separately from the classifier, one could choose
to sample some features from all brain regions and either
perform regularization in the classifier or choose a classifi-
cation model that is less sensitive to overfitting (e.g., sup-
port vector machines). Each of these decisions should be
made relative to the particular dataset and illness being
studied.

CONCLUSIONS

In general our volumetric variant of the hierarchical
feed-forward model originally proposed by Serre et al. for
detecting objects in photographs performed quite well on
the functional brain imaging data sets used in this study.
In fact, it outperformed both the comparison methods and
the human counterpart at detecting AD in the FDG PET
ADNI data set. The method is very general and does not
rely on particular imaging modalities. It could be used on
many spatial maps commonly computed in diagnostic and
research imaging studies. Furthermore, there is evidence
that it could be used to test hypotheses about regions
implicated in disease. In conclusion, models designed in
the computer vision community for object recognition and
tracking in images of natural scenes may indeed have
applications in detecting and tracking disease progression
in human functional brain imaging with minimal
modifications.
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