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Occlusion Coherence: Detecting
and Localizing Occluded Faces

Golnaz Ghiasi and Charless C. Fowlkes

Abstract—The presence of occluders significantly impacts object recognition accuracy. However, occlusion is typically treated as
an unstructured source of noise and explicit models for occluders have lagged behind those for object appearance and shape. In
this paper we describe a hierarchical deformable part model for face detection and keypoint localization that explicitly models part
occlusion. The proposed model structure makes it possible to augment positive training data with large numbers of synthetically
occluded instances. This allows us to easily incorporate the statistics of occlusion patterns in a discriminatively trained model. We
test the model on several benchmarks for keypoint localization and detection including challenging data sets featuring significant
occlusion. We find that the addition of an explicit model of occlusion yields a system that outperforms existing approaches in
keypoint localization accuracy and detection performance.

Index Terms—Object Recognition, Face Detection, Occlusion, Deformable Part Model
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1 INTRODUCTION

A CCURATE localization of facial keypoints provides
an important building block for many applications

including identification [1] and analysis of facial expres-
sions [2]. Significant progress has been made in this
task, aided in part by the fact that faces have less intra-
category shape variation and limited articulation compared
to other object categories of interest. However, feature
point localization tends to break down when applied to
faces in real scenes where other objects in the scene (hair,
sunglasses, other people) are likely to occlude parts of
the face. Fig. 1(a) depicts the output of a deformable part
model [3] where the presence of occluders distorts the final
alignment of the model.

A standard approach to handling occlusion in part-based
models is to compete part feature scores against a generic
background model or fixed threshold (as in Fig. 1(b)).
However, setting such thresholds is fraught with difficulty
since it is hard to distinguish between parts that are present
but simply hard to detect (e.g., due to unusual lighting) and
those which are genuinely hidden behind another object.

Treating occlusions as an unstructured source of noise
ignores a key aspect of the problem, namely that occlusions
are induced by other objects and surfaces in the scene and
hence should exhibit occlusion coherence. For example, it
would seem very unlikely that every-other keypoint along
an object contour would happen to be occluded. Yet many
occlusion models make strong independence assumptions
about occlusion, making it difficult to distinguish a pri-
ori likely from unlikely patterns. Ultimately, an occluder
should not be inferred simply by the lack of evidence
for object features, but rather by positive evidence for the
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(a) (b) (c)

Fig. 1: Occlusion impacts part localization performance.
In panel (a) the ouput of a deformable part model [3]
is distorted by the presence of occluders, disrupting lo-
calization even for parts that are far from the site of
occlusion. (b) Introducing independent occlusion of each
part results in better alignment but occlusion is treated
as an outlier process and prediction of occlusion state is
inaccurate. (c) The output of our hierarchical part model,
which explicitly models likely patterns of occlusion, shows
improved localization as well as accurate prediction of
which keypoints are occluded.

occluding object that explains away the lack of object
features.

The contribution of this paper is an efficient hierarchical
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deformable part model that encodes these principles for
modeling occlusion and achieves state-of-the-art perfor-
mance on benchmarks for occluded face localization and
detection (depicted in Fig. 1(c)). Building on our pre-
viously published results [4], we model the face by an
arrangement of parts, each of which is in turn composed
of local keypoint features. This two-layer model provides a
compact, discriminative representation for the appearance
and deformations of parts. It also captures the correlation
in shapes and occlusion patterns of neighboring parts (e.g.,
if the chin is occluded it would seem more likely the
bottom half of the mouth is also occluded). In addition to
representing the face shape, each part has an associated oc-
clusion state chosen from a small set of possible occlusion
patterns, enforcing coherence across neighboring keypoints
and providing a sparse representation of the occluder shape
where it intersects the part. We describe the details of this
model in Section 3.

Specifying training data from which to learn feasible
occlusion patterns comes with an additional set of diffi-
culties. Practically speaking, existing datasets have focused
primarily on fully visible faces. Moreover, it seems unlikely
that any reasonable sized set of training images would
serve to densely probe the space of possible occlusions.
Beyond certain weak contextual constraints, the location
and identity of the occluder itself are arbitrary and largely
independent of the occluded object. To overcome this
difficulty of training data, we propose a unique approach
for generating synthetically occluded positive training ex-
amples. By exploiting the structural assumptions built into
our model, we are able to include such examples as
“virtual training data” without explicitly synthesizing new
images. This in turn leads to an interesting formulation of
discriminative training using a loss function that depends on
the latent occlusion state of the parts for negative training
examples which we describe in Section 4.

We carry out an extensive analysis of this model per-
formance in terms of keypoint localization, occlusion pre-
diction and detection accuracy. The model we describe
achieves high-quality keypoint localization accuracy, com-
parable to pose regression, while being more robust to
initialization and occlusions (Section 5.1). We also find
that the prediction of which keypoints are occluded is im-
proved over a simple independent occlusion model (Section
5.2). Unlike keypoint regression methods, our model also
functions as a detector and achieves good performance on
standard face detection benchmarks such as FDDB [5].
Finally, to illustrate the impact of occlusion on existing
detection models, we evaluate performance on a new face
detection dataset that contains significant numbers of par-
tially occluded faces (Section 5.3).

2 RELATED WORK

Face Detection and Localization: There is a long history
of face detection in the computer vision literature. Classic
approaches to 2D alignment include Deformable Templates
[6], Active Appearance Models (AAMs) [7], [8], [9] and

elastic graph matching [10]. Alignment with full 3D models
provides even richer information at the cost of additional
computation [11], [1]. A key difficulty in most of these
approaches is the dependence on iterative and local search
techniques for optimizing model alignment with a query
image. This typically results in high computational cost
and the concern that local minima may undermine system
performance.

A more recent family of approaches makes use of
constrained local models that first detect candidate local
features and then enforce constraints between parts [12].
Training regressors that learn to predict keypoint locations
from both appearance and spatial context provided by other
detector responses has also shown good performance [13],
[14], [15], [16], [17]. A key advantage is that such pose-
regression models can be trained layer-wise in a discrimi-
native fashion and thus sidestep the optimization problems
of global model alignment as well as providing fast, feed-
forward performance at test time.

Our model is most closely related to the work of
[3] which applies discriminatively trained deformable part
models (DPM) [18] to face analysis. This offers an in-
termediate between the extremes of model alignment and
keypoint regression, by utilizing mixtures of simplified
shape models that make efficient global optimization of part
placements feasible while exploiting discriminative training
criteria. Similar to [19], we use local part and keypoint mix-
tures to encode richer multi-modal shape distributions. We
extend this line of work by adding hierarchical structure and
explicit occlusion to the model. We introduce intermediate
part nodes that do not have an associated “root template”
but instead serve to encode an intermediate representation
of occlusion and shape state. The notion of hierarchical
part models has been explored extensively as a tool for
compositional representation and parameter sharing (see
e.g., [20], [21]). While the intermediate state represented
in such models can often be formally encoded in by
non-hierarchical models with expanded state spaces and
tied parameters, our experiments show that the particular
choice of model structure proves essential for efficient
representation and inference.

Occlusion Modeling: Modeling occlusion is a natural fit
for recognition systems with an explicit representation of
parts. Work on generative constellation models [22], [23]
learned parameters of a full joint distribution over the
probability of part occlusion and relied on brute force enu-
meration for inference, a strategy that doesn’t scale to large
numbers of keypoints. More commonly, part occlusions
are treated independently which makes computation and
representation more efficient. For example, the supervised
detection model of [24] associates with each part a binary
variable indicating occlusion and learns a corresponding
appearance template for the occluded state.

The authors of [21] impose a more structured distribution
on the possible occlusion patterns by specifying grammar
that generates a person detector as a variable length vertical
chain of parts terminated by an occluder template, while
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Fig. 2: Our model consists of a tree of parts (black circles) each of which is connected to a set of keypoints (green or
red) in a star topology. The examples here show templates corresponding to different choices of part shape and occlusion
patterns. Red indicate occluded keypoints. Shape parameters are independent of occlusion state. Keypoint appearance is
modeled with a small HOG template (2nd row) and occluded keypoints are constrained to have an appearance template
fixed to 0. Note how the model produces a wide range of plausible shape configurations and occlusion patterns.

[25] allows “flexible compositions” which correspond to
occlusion patterns that leave visible a connected subgraph
of the original tree-structure part model. Our approach
provides a stronger model than full independence, cap-
turing correlations between occlusions of non-neighboring
keypoints. Unlike the grammar-based approach, occlusion
patterns are not specified structurally but instead learned
from data and encoded in the model weights.

Pose regression approaches have also been adapted to
incorporate explicit occlusion modeling. For example, the
face model of [26] uses a robust m-estimator which serves
to truncate part responses that fall below a certain threshold.
In our experiments, we compare our results to the recent
work of [15] which uses occlusion annotations when train-
ing a cascade of regressors where each layer predicts both
part locations and occlusion states.

3 HIERARCHICAL PART MODEL

In this section we develop a hierarchical part model that
simultaneously captures face appearance, shape and oc-
clusion. Fig. 2 shows a graphical depiction of the model
structure. The model has two layers: the face consists of
a collection of parts (nose, eyes, lips) each of which is in
turn composed of a number of keypoints that specify local
edge features making up the part. Keypoints are connected
to their parent part nodes with a star topology while the
connections between parts forms a tree. In addition to
location, each part takes one of a discrete set of shape states
(corresponding to different facial shapes or expressions)
and occlusion states (corresponding to different patterns of
visibility). The model topology which groups facial features
into parts was specified by hand while the shape and occlu-
sion patterns are learned automatically from training data
(see Section 4). This model, which we term a hierarchical
part model (HPM) is a close cousin of the deformable part
model (DPM) of [18] and the flexible part model (FMP) of
[3]. It differs in the addition of part nodes that model shape

but don’t include any “root filter” appearance term, and by
the use of mixtures to model occlusion patterns for each
part. In this section we introduce some formal notation to
describe the model and some important algorithmic details
for performing efficient message passing during inference.

3.1 Model Structure
Let l, s, o denote the hypothesized locations, shape and
occlusion of N parts and keypoints describing the face.
Locations l ∈ R2N range over the whole image domain
and o ∈ O1 × O2 . . . × ON indicates the occlusion states
of parts and keypoints. The shape s ∈ S1 × S2 . . . × SN
selects one of a discrete set of shape mixture components
for each part. We define a tree structured scoring function
by:

Q(l, s, o|I) =
∑
i

φi(li, si, oi|I) (1)

+
∑
i

∑
j∈child(i)

ψij(li, lj , si, sj) + bij(si, sj , oi, oj)

where the potential φ scores the consistency of the local
image appearance around location li, ψ is a quadratic shape
deformation penalty, and b is a co-occurrence bias.

The first (unary) term scores the appearance evidence.
We linearly parameterize the unary appearance term with
filter weights wsii that depend on the discrete shape mixture
selected

φi(li, si, oi|I) = wsii · φ(li, oi|I)

Appearance templates are only associated with the leaves
(keypoints) in the model so the unary term only sums
over those leaf nodes. The occlusion variables oi for the
keypoints are binary, corresponding to either occluded or
visible. If the ith keypoint is unoccluded, the appearance
feature φ is given by a HOG [27] feature extracted at
location li, otherwise the feature is set to 0. This is natural
on theoretical grounds since the appearance of the occluder
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Fig. 3: Virtual positive examples are generated syntheti-
cally by starting with a fully visible training example and
sampling random coherent occlusion patterns.

is arbitrary and hence indistinguishable from background
based on its local appearance. Empirically we have found
that unconstrained occluder templates learned with suffi-
ciently varied data do in fact have very small norms, further
justifying this choice [28].

The second (pairwise) term in Eq. 1 scores the placement
part j based on its location relative to its parent i and the
shape mixtures of the child and parent. We model this with
a linearly parameterized function:

ψij(li, lj , si, sj) = w
si,sj
ij · ψ(li − lj)

where the feature ψ includes the x and y displacements
and their cross-terms, allowing the weights wij to encode
a standard quadratic “spring”. We assume that the shape
of the parts is independent of any occluder so the spring
weights do not depend on the occlusion states. 1 The pair-
wise parameter bij encodes a bias of particular occlusion
patterns and shapes to co-occur. Formally, each keypoint
has the same number of occlusion states and shape mixtures
as its parent part, but we fix the bias parameters between
the part and its constituent keypoints to impose a hard
constraint that the mixture assignments are compatible.

3.2 Efficient Message Passing
The model above can be made formally equivalent to the
FMP model used in [19] by introducing local mixture
variables that live in the cross-product space of oi and si.
However, this reduction fails to exploit the structure of the
occlusion model. This is particularly important due to the
large size of the model. Naive inference is quite slow due
to the large number of keypoints and parts (N=68+10), and
huge state space for each node which includes location,
occlusion pattern and shape mixtures. Consider the message
passed from one part to another where each part has
L possible locations, S shape mixtures and O occlusion
patterns. In general this requires minimizing over functions

1. In practice we find it is sufficient for the deformation cost to only
depend on the child shape mixture, i.e. ψij(li, lj , si, sj) = w

sj
ij ·ψ(li−

lj) which gives a factor S speedup with little decrease in performance.

of size (LSO)2 or L(SO)2 when using the distance trans-
form. In the models we test, SO = 12 which poses a
substantial computation and memory cost, particularly for
high-resolution images where L is large.

Part-part messages: While the factorization of shape and
occlusion doesn’t change the asymptotic complexity, we
can reduce the runtime in practice by exploiting distribu-
tivity of the distance transform over max to share com-
putations. Standard message passing from part j to part i
requires that we compute:

µj→i(li, si, oi) = max
lj ,sj ,oj

[
ψij(li, lj , si, sj)

+
∑

k∈child(j)

µk→j(lj , sj , oj) + bij(si, sj , oi, oj)

]
where we have dropped the unary term φj which is 0 for
parts. Since the bias doesn’t depend on the location of parts
we can carry out the computation in two steps:

νij(lj , si, sj , oj) =

max
lj

ψij(li, lj , si, sj) +
∑

k∈child(j)

µk→j(lj , sj , oj)


µj→i(li, si, oi) = max

sj ,oj
[νij(lj , si, sj , oj) + bij(si, sj , oi, oj)]

which only requires computing S2O distance transforms.

Keypoint-part messages: In our model the occlusion and
shape variables for a keypoint are determined completely
by the parent part state. Since the score is known for
an occluded keypoint in advance, it is not necessary to
compute distance transforms for those components. We
write this computation as:

νjk(lj , sj , oj) =

{
0 if k occluded in oj
maxlk ψjk(lj , lk, sj , sj) + φk(lk, sj , oj |I)

µk→j(lj , sj , oj) = νjk(lk, sj , oj) + bjk(sj , oj , sj , oj)

Where we have used the notation to explicitly capture
the constraint that keypoint shape and occlusion mixtures
(sk, ok) must match those of the parent part (sj , oj). In
our models, this reduces the memory and inference time by
roughly a factor of 2, a savings that becomes increasingly
significant as the number of occlusion mixtures grows.

3.3 Global Mixtures for Viewpoint and Resolution
Viewpoint and image resolution are the largest sources
of variability in the appearance and relative location of
keypoints. To capture this, we use a mixture over three head
poses V = {left, right, center}. These “global” mixtures
can be represented with the same notation as above by
expanding the state-space of the shape variables to be the
cross product of the set of local shapes for part i and the
global viewpoint for the model (i.e., si ∈ Si × V) and
fixing some entries of the bias bij to be −∞ to prevent
mixing of local shapes from different viewpoints. In our
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implementation we tie parameters to enforce the left- and
right-facing models to be mirror symmetric.

The HPM model we have described includes a large
number of keypoints. While this is appropriate for high
resolution imagery, it does not perform well in detecting
and modeling low resolution faces (< 150 pixels tall).
To address this we introduce an additional global mixture
component for each viewpoint that corresponds to low-
resolution HPM model consisting of a single half-resolution
template for each part and no keypoint templates. This
mixture is trained jointly with the full resolution model
using the strategy described in [29].

4 MODEL TRAINING AND INFERENCE
The potentials in our shape model are linearly parameter-
ized, allowing efficient training using an SVM solver [18].
Face viewpoint, keypoint locations, shape and occlusion
mixtures are completely specified by pre-clustering the
training data so that parameter learning is fully supervised.
We first describe how these supervised labels are derived
from training data and how we synthesize “virtual” positive
training examples that include additional occlusion. We
then discuss the details of the parameter learning and test-
time prediction.

4.1 Training Data
We assume that a training data set of face images has been
annotated with keypoint locations for each face. From such
data we automatically generate additional mixture labels
specifying viewpoint, shape, and occlusion. We also gen-
erate additional virtual training examples by synthesizing
plausible coherent occlusion patterns.

Viewpoint and Resolution Mixtures: To cluster training
examples into a set of discrete viewpoints, we make use
of the MultiPIE dataset [30] which provides ground-truth
viewpoint annotations for a limited set of faces. We perform
Procrustes alignment between each training example and
examples in the MultiPIE database and then transfer the
viewpoint label from nearest MultiPIE example to the train-
ing example. In our experiments we used only three view-
point clusters: center (+/-7.5 degrees), left, and right-facing
(7.5-22.5 degrees). In addition to viewpoint, alignment to
MultiPIE also provides a standard scale normalization and
removes in-plane rotations from the training set. To train
the low-resolution mixture components, we use the same
training data but down-sampled the input image by a factor
of 2.

Part Shape and Occlusion Mixtures: For each part and
each viewpoint, we cluster the set of keypoint configu-
rations in the training data in order to come up with a
small number of shape mixtures for that part. The part
shapes in the final model are represented by displacements
relative to a parent node so we subtract off the centroid
of the part keypoints from each training example prior
to clustering. The vectors containing the coordinates of
the centered keypoints are clustered using k-means. We

Fig. 4: Example shape clusters for face parts (nose, upper
lip, lower lip). Co-occurrence biases for combinations of
part shapes are learned automatically from training data.
Different colored points correspond to location of each
keypoint relative to the part (centroid).

imagine it would be efficient to allocate more mixtures to
parts and viewpoints that show greater variation in shape,
but in the final model tested here we use fixed allocation of
S = 3 shape mixtures per part per viewpoint. Fig. 4 shows
example clusterings of part shapes for the center view.

Synthetic Occlusion Patterns: In the model each keypoint
is fully occluded or fully visible. The occlusion state of a
part describes the occlusion of its constituent keypoints.
If there are Nk keypoints then there are 2Nk possible
occlusion patterns. However, many of these occlusions are
quite unlikely (e.g. every other keypoint occluded) since
occlusion is typically generated by an occluder object with
a regular, compact shape.

To model spatial coherence among the keypoint occlu-
sions, we synthetically generate “valid” occlusions patterns
by first sampling mean part and keypoint locations from
the model and then randomly sampling a quarter-plane
shaped occluder and setting as occluded those keypoints
that fall behind the occluder. Let a, b be uniformly sampled
from a tight box surrounding the face. A keypoint i with
location li = (x, y) is occluded if (x ≶ a) ∧ (y ≶ b)
where the quadrant is chosen at random. While our occluder
is somewhat “boring”, it is straightforward to incorporate
more interesting shapes, e.g., by sampling from a database
of segmented objects. Fig. 3 shows example occlusions
generated for a training example.

In our experiments we generate 8 synthetically occluded
examples for each original training example. For each
part in the model we cluster the set of resulting binary
vectors in order to generate a list of valid part occlusion
patterns. The occlusion state for each keypoint in a training
example is then set to be consistent with the assigned
part occlusion pattern. In our experiments we utilized only
O = 4 occlusion mixtures per part, typically corresponding
to unoccluded, fully occluded and two half occluded states
whose structure depended on the part shape and location
within the face.
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Fig. 5: Examples of landmark localization and occlusion estimation for images from the HELEN (row 1) and COFW
(rows 2-3) test datasets. Red indicates those keypoints which are predicted as being occluded by the HPM.

4.2 Parameter learning
Writing our scoring function on training image I as an inner
product of weights and features Q(l, s, o) = w ·Ψ(l, s, o|I),
we solve the regularized SVM

min
w

1

2
‖w‖2 + C

∑
t

ηt

w ·Ψ(lt, st, ot|It) ≥ 1− ηt ∀t ∈ P
w ·Ψ(l, s, o|It) ≤ −(1−mδ(o)− ηt) ∀l, s, o ∀t 6∈ P

where (lt, st, ot) denotes the supervised model configura-
tion for a positive training example, δ(o) is a margin scaling
function that measures the fraction of occluded keypoints
and C and m are hyper-parameters. The constraint on
positive images t ∈ P encourages that the score of the
correct model configuration be larger than 1 and penalizes
violations using slack variable ηt. The second constraint
encourages the score to be low on all negative training
images t 6∈ P for all configurations of the latent variables.

Margin scaling for occlusion: This formulation differs
from standard supervised DPM training in the treatment
of negative training examples. Since keypoints can be
occluded in our model, fully or partially occluded faces can
be detected by our model in the negative images. These
images do not contain any faces and we would like our
model generates low scores for these detections. However,
a keypoint which is detected as occluded in a negative
image is in some sense correct. There is no real distinction
between a negative image and a positive image of a fully
occluded face! Thus we penalize negative detections (false
positives) with significant amounts of occlusion less than
fully visible false positives.

For this purpose, we scale the margin for negative
examples in proportion to the number of occluded key-

points. We specify the margin for a negative example as
1 −mδ(o), where the function δ(o) measures the fraction
of occluded keypoints and m is a parameter. As the number
of occluded keypoints increases the margin decreases and
the model score for that example can be larger without
violating the constraint. The margin for a fully occluded
example is equal to 1 −m. Setting m = 0 corresponds to
standard classification where all the negatives have the same
margin of 1. In this case the biases learned for occluded
keypoints tend to be low, otherwise many fully or partially
occluded negative examples will violate the constraint. As
a result, models trained with m = 0 tend not to predict
occlusion. As we increase m, the scores of fully or partially
occluded negative examples can be larger without violating
the constraint and the training procedure is thus free to learn
larger bias parameters associated with occluded keypoints.
As we show in our experimental evaluation, this results in
higher recall of occluded keypoints and improved test-time
performance.

We use a standard hard-negative mining or cutting-plane
approach to find a small set of active constraints for each
negative image. Given a current estimate of the model
parameters w, we find the model configuration (s, l, o) that
maximizes w ·Ψ(l, s, o|It)−mδ(o) on a negative window
It. Since the loss mδ(o) can be decomposed over individual
keypoints, this loss-augmented inference can be easily
performed using the same inference procedure introduced
in section 3. We simply subtract m

Nk
from the messages

sent by occluded keypoints where Nk = 68 is the number
of keypoints. During training we make multiple passes
through the negative training set and maintain a pool of
hard negatives for each image. We share the slack variable
ηt for all such negatives found over a single window It.
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Fig. 6: Panels show cumulative error distribution curves (the proportion of test images that have average landmark
localization error below a given threshold) on three test sets: LFPW, an occlusion rich subset of HELEN and on COFW.
We compare the hierarchical part model (HPM) with and without occlusion mixtures (HPM-occ) to a baseline tree-
structured DPM [3] with the same set of keypoints, and to robust pose regression (RCPR) [15]. The legend indicates the
training set (in parentheses), the failure rate % at a localization threshold of 0.1 and the average error [in brackets]. The
HPM shows good localization performance, especially on more difficult datasets with significant occlusion. In general
regression models (dashed lines) have better performance for a low localization threshold compare to part based models
(solid lines). However, the failure rates for regression models drop more slowly and eventually cross over those for part
models (solid lines) as the allowable localization error threshold increases.

4.3 Test-time Prediction

Scale and In-plane Rotation: In our experiments, we ob-
served that part models with standard quadratic spring costs
are surprisingly sensitive to in-plane rotation. Models that
performed well on images with controlled acquisition (such
as MultiPIE) fared poorly “in the wild” when faces were
tilted. The alignment procedure described above explicitly
removes scale and in-plane rotations from the set of training
examples. At test time detection, we perform an explicit
search over scale and in plane rotations (-30 to 30 degrees
with an increment of 6 degrees).

Landmark Prediction: To benchmark keypoint localiza-
tion of the model across datasets that utilized different
landmark annotation standards, we used linear regression to
learn a mapping from the set of locations returned by our
hierarchical part model. In our experiments, this regression
was important to accurately benchmark localization perfor-
mance. Using a heuristic approach of simply taking the
closest keypoint reported performed significantly worse, in
some cases doubling failure rates.

Let li ∈ R2Nk be the vector of keypoint locations
returned when running the model on a training example
i and l̂i ∈ R2M a vector of ground-truth keypoint location
for that image. We train a linear regressor

min
β

∑
i

‖l̂i − βT li‖2 + λ‖β‖2

where β ∈ R2Nk×2M is the matrix of learned coefficients
and λ is a regularization parameter. To prevent overfitting,
we restrict βpq to be zero unless the keypoint p belongs to
the same part as q.

To predict keypoint occlusion, we carried out a similar
mapping procedure using regularized logistic regression.

However, we found that in practice a much simpler rule
of specifying a correspondence between the two sets of
keypoints based on their distance and transferring the
occlusion flag from the model to benchmark keypoints
achieved the same accuracy.

5 EXPERIMENTAL EVALUATION

Figure 5 shows example outputs of the HPM model run
on example face images. The model produces both a
detection score and estimates of keypoint locations and
occlusion states. While the possible occlusion patterns
are quite limited (4 occlusions patterns per part shape),
the final predicted occlusions (marked in red) are quite
satisfying in highlighting the support of the occluder for
many instances. We evaluate the performance of the model
on three different tasks: landmark localization, landmark
occlusion prediction, and face detection. In our experiments
we focus on test datasets that have significant amounts
of occlusion and emphasize the ability of the model to
generalize well across datasets.

5.1 Landmark Localization

We evaluate performance of our method and related base-
lines on three benchmark datasets for keypoint localization:
Labeled Face Parts in the Wild (LFPW) [31], a subset
of the HELEN dataset [32] which contained occlusions,
and the more difficult Caltech Occluded Faces in the Wild
(COFW) [15] dataset. The latter two datasets were selected
to highlight the performance of our model in the presence
of occlusion and a wider variety of poses. The authors
of [15] estimate that LFPW only contains 2% occluded
keypoints compared to 23% for COFW. Fig. 5 depicts
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LFPW (29) COFW (29)
model training dataset FR AE FR AE
RCPR-occ LFPW29 11.05 0.073 36.56 0.115
RCPR-occ LFPW29+ 1.05 0.038 36.36 0.096
RCPR-occ COFW29 10.99 0.071 23.72 0.091
RCPR COFW29 8.95 0.064 20.75 0.085
HPM LFPW68,INR- 2.63 0.050 13.24 0.075
HPM HELEN68,INR- 1.58 0.049 9.29 0.072
HPM HELEN68,PAS- 1.05 0.048 7.91 0.070

TABLE 1: We find HPM generalizes well across datasets
while pose regression has a strong dependence on training
data. Localization performance is measured by failure rate
(FR) and average error (AE). The RCPR model trained on
COFW performs much better on COFW test data compared
to RCPR-occ trained on LFPW29+ (20% FR vs 36% FR)
but has much worse performance on LFPW test data com-
pared to that model (8% FR vs 1% FR). Good performance
on LFPW also depends heavily on including additional
warped positive instances (LFPW29+ vs LFPW29). The
HPM trained on LFPW68 has low failure rates on both
COFW (13%) and LFPW (%2) test data. Last two rows of
the table show the performance of HPM when a different
training data set (HELEN68) is used for training. This
dataset has more variation and more images (1758) com-
pared to LFPW68 (682) and improves performance of HPM
on both test datasets. Training on more negative images
(6000 images from PASCAL) decreases localization error
of our model compared to using only INRIA negatives.

selected results of running our detector on example images
from the HELEN and COFW test datasets.

We note there is a variety of keypoint annotation con-
ventions across these different datasets. LFPW and COFW
contain a set of 29 landmarks while HELEN includes a
much denser set of 194 landmarks. The 300 Faces in-
the-wild Challenge (300-W) [33] has also produced sev-
eral unified benchmarks in which the LFPW and HELEN
datasets have been re-annotated with a set of 68 standard
keypoints. For the purposes of benchmarking, and to allow
easy comparison to previously reported work, we utilize the
29 keypoints for the LFPW and COFW datasets and the 68
keypoints for HELEN.

Localization Evaluation Metrics: To evaluate keypoint
localization independent of detection accuracy, we assume
that detection has already been performed and run the
algorithm on cropped versions of the test images. While our
model is capable of both detecting and localizing keypoints,
we would like to compare to pose regression methods that
require good initialization. We thus follow the standard
protocol (see e.g., [33]) of using the ground-truth face
bounding box to initialize the system. For pose regression
methods we randomly generate an initial bounding box that
overlaps the ground-truth face box by at least 80%. For our
model, we evaluate the localization accuracy for the highest
scoring detection that overlaps the ground-truth by at least
80%.

We report the average keypoint localization error across
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Fig. 7: We analyze the landmark localization average error
of RCPR, HPM and DPM for different overlap ratio with
the ground-truth face boxes. For RCPR we change the
minimum overlap ratio of the initial bounding boxes and the
ground-truth face boxes. For HPM and DPM, we change the
minimum overlap threshold of the returned detections and
ground-truth boxes. RCPR is very sensitive to the amount
of overlap and its performance decreases rapidly as the
overlap ratio decreases. But, HPM and DPM are robust
to the overlap threshold and they can maintain the same
performance over different thresholds.

the entire test set as well as the proportion of “failures”, test
images that had average keypoint localization above a given
threshold. Distances used in both quantities are expressed as
a proportion of the inter-ocular (iod) distance specified by
the ground-truth. Computing the failure rate across a range
thresholds yields a cumulative error distribution curve (Fig.
6). When a single summary number is required we report
the failure rate at a standard threshold of 0.1 iod.

We note that there is some basic difficulty in benchmark-
ing localization on heavily occluded examples. The COFW
test data includes human-marked annotations for occluded
keypoints but exact placement of occluded keypoints is
difficult even for humans. It may be more informative
for applications such as face identification to only bench-
mark localization of visible keypoints. In the following
experiments we use the standard benchmark protocol that
includes occluded keypoints but note that the localization
failure rates drop by half (e.g., on COFW) when only
benchmarking localization accuracy of visible keypoints.

Training and baselines: To train our model, we used a set
of 682 near-frontal training images taken from LFPW using
the 68 keypoint annotations provided by 300-W. From each
training image we generate 8 synthetically occluded “virtual
positives” yielding a final training set of 6138 positives. As
mentioned previously, since we explicitly search over in-
plane rotations and scales, standardize the pose of each
training image prior to learning the model. To evaluate
cross-dataset generalization, we also trained a version of
our model on a portion the HELEN dataset consisting of
1758 frontal images annotated with 68 keypoints. To fit
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(a) Occlusion prediction accuracy (b) Failure rate vs. occlusion recall (c) Localization error vs. occlusions recall

Fig. 8: Occlusion prediction accuracy on the COFW test dataset for variants of our model. Using a suitable margin scaling
function (see Sec. 4.2) allows for significantly better occlusion prediction accuracy (a) over an independent occlusion
model (a) with minimal loss in localization performance (b,c). Localization performance of DPM and RCPR are included
for reference.

linear regression coefficients for mapping from the HPM
predicted keypoint locations to 29 keypoint datasets, we ran
the model on the COFW training data set and fit regression
parameters β that mapped from the 68 predicted points to
the 29 annotated.

For comparison, we trained baseline models including a
version of our model without occlusion mixtures (HPM-
occ) and the non-hierarchical deformable part model2

(DPM) described by [3]. We also evaluate the robust
cascaded pose regression (RCPR) described in [15] and
their implementation of explicit shape regression [16] using
both pre-trained models provided by the authors and models
retrained to predict 68 keypoints. Unlike HPM which
uses virtual occlusion, RCPR requires training examples
with actual occlusions and corresponding annotations. For
training sets that featured no occlusion, we thus trained a
variant that does not model occlusion (RCPR-occ).

Localization Results (LFPW): Labeled Face Parts in the
Wild (LFPW) [31], a commonly used dataset for evalu-
ating landmark estimation consisting of 300 test images
annotated with a standard set of 29 keypoints. The original
LFPW test set is no longer completely available due to
broken links, but we were able to download 194 of the test
images. Fig. 6(a) shows the localization error distribution.

For the LFPW dataset, which features relatively little
occlusion, different part-based models perform similarity
while pose regression yielded better results at tight local-
ization thresholds. The HPM model achieved an average lo-
calization error of 0.05 when trained on LFPW and slightly
lower (0.048) when trained on HELEN. By comparison,
the DPM model [3] has a higher average error 0.052. The
robust pose regression model of [15] yielded a very low
average error of 0.038. However, we have observed that the
exact choice of training data is essential to achieving this

2. The original DPM model of [3] was trained on the very constrained
MultiPIE dataset [30]. Retraining the model and performing a similar
search over in-plane rotations yielded significantly better performance
which we report here (c.f., [15])

level of performance. As highlighted in Table 1 training on
other datasets resulted in significantly worse performance
while HPM performance was quite stable across datasets.
In addition, achieving good performance with RCPR on
LFPW also required boosting the set of training images
by adding 2000 perturbed versions of training images as
additional training examples (denoted LFPW29+ in the
table).

Localization Results (HELEN): We evaluated on a subset
of the HELEN dataset [32] consisting of 126 images which
were selected on the basis having some significant amount
of occlusion. HELEN generally includes more difficult
images than LFPW and our selected subset was harder
still. These test images contain 68 keypoint annotations
so we evaluated only models trained on LFPW68. We do
not report results of the HPM (HELEN68) on this dataset
as there was overlap between training and testing images.
Fig. 6(b) shows the error distribution. The HPM achieves
an average error of 0.0811, beating out the DPM baseline
(0.0931) and RCPR (0.0903). Removing explicit occlusion
from the model (HPM-occ) results in higher failure rates
for a range of thresholds.

Localization Results (COFW): Finally, we tested on the
507 image test set from Caltech Occluded Faces in the Wild
(COFW) [15] containing internet photos depicting a wide
variety of more difficult poses and includes a significant
amount of occlusion. Since COFW training only contains
29 keypoints, we could not train the HPM model and in-
stead evaluate models trained on LFPW68 and HELEN68.
Fig. 6(c) shows that HPM achieves a significantly lower
average error than RCPR and lower failure rates for all but
the smallest (< 0.06) localization failure thresholds.

Dependence of Localization on Detection: A key benefit
of the HPM (and DPM [3]) approach is that the same model
serves to both detect and localize the keypoints. In contrast,
pose regression methods such as RCPR require that the face
already be detected. This distinction becomes particularly
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important for occluded faces since detection is significantly
less accurate (see Detection experiments below).

To characterize the dependence of keypoint localization
on accurate detection, we benchmarked average localization
error for varying degrees of overlap between the hypoth-
esized detection and ground-truth bounding box on the
COFW test set. As shown in Fig. 7, decreasing the overlap
ratio has no affect HPM / DPM performance since there
are never false positives in the vicinity of the face that
score higher than one with high overlap ratio. In contrast,
RCPR performs significantly worse when initialized from
bounding boxes that do not have high overlap with the face.
Since the area over which RCPR searches is learned from
training data, we also retrained a version of RCPR for each
degrees of overlap. This yielded improved performance but
still shows a significant fall off in performance compared
to the HPM.

5.2 Occlusion Prediction
To evaluate the ability of the model to correctly determine
which keypoints are occluded, we evaluate the accuracy
of occlusion as a binary prediction task. For a given
test set, we compute precision and recall of occlusion
predictions relative to the ground-truth occlusion labels of
the keypoints.

We trace out a precision-recall curve for occlusion
prediction by adjusting the model parameters to induce
different predicted occlusions. As described in section
3, the bias parameter bij(si, sj , oi, oj) favors particular
co-occurrences of part types. By increasing (decreasing)
the bias for occluded configurations we can encourage
(discourage) the model to use those configurations on
test. Let bij(si, sj , oi, oj) be a learned bias parameter
between an occluded leaf and its parent. To make the
model favor occluded parts, we modify this parameter to
bij(si, sj , oi, oj) + abs(bij(si, sj , oi, oj))× α.

Fig. 8(a) depicts occlusion precision-recall curves gen-
erated by running the HPM model for different bias α
offsets. The crosses mark the precision-recall for the default
operating point when α = 0. We compare performance
of the HPM model with different values of the margin
scaling hyper-parameter m as well as RCPR and a baseline
independent occlusion model. Fig. 8 (b) and (c) show the
corresponding average errors and failure rates for these
models parameterized by the recall of occlusion. For large
values of α, the model predicts more occlusions, resulting
in improved recall at the expense of precision (a) and
ultimately lower localization accuracy (b,c).

Margin scaling: As described in section 4.2, we can
change the learning parameter m to produce models with
different recall of occlusions at the trained operating point
(α = 0). When m = 0 all the negative examples including
fully or partially occluded configurations are penalized
equally. Therefore, model learns small biases for occluded
configurations, reducing the total loss over occluded neg-
ative examples and decreasing default recall of occlusion.
When driven to predict more occlusion by increasing α the

Fig. 9: Face detection performance on the continuous-ROC
FDDB benchmark [5]. Multi-resolution HPM is trained on
the front view training data, while this dataset has many
side view faces. But still it has a competitive performance
when compared with state-of-the-art face detection methods
trained on front view and side view training data [34].

model localization performance degrades rapidly. Training
the model with larger values of m yields a model which
naturally predicts occlusion more frequently and degrades
more gracefully for larger values of α. We found that
choosing a value of m = 0.5 provided a good compromise,
improving both recall and localization accuracy.

Independent occlusion baseline: We compared the results
of HPM with a model that had the same architecture but
in which there are no occlusion mixtures at the part level
and each keypoint is allowed to be independently set to
visible or occluded depending on learned biases. We refer
to this as “independent occlusion” since the model does not
capture any correlations between the occlusion of different
keypoints. We found that this independent occlusion model
has many of the same benefits as the HPM model in
terms of keypoint localization accuracy (Fig. 8). However,
occlusion prediction accuracy is significantly worse in the
independent model with precisions typically 5% lower than
HPM(m = 0.9) over a range of recall values.

5.3 Detection
Pose regression requires good initialization provided by a
face detector to accurately locate keypoints. In contrast,
part-based models have the elegant advantage of performing
detection and localization simultaneously. In this section,
we compare the detection performance of our approach and
other top methods on two datasets: FDDB [5] and our own
Occluded Face Detection (OFD-UCI) dataset.

Multi-resolution HPM: Since many face detection datasets
such as FDDB contain many low-resolution faces, we
trained a multi-resolution variant of our model [29]. This



11

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

 

 

Multi−resolution HPM(HELEN68) , AP: 88.40%
HPM(HELEN68) , AP: 87.72%

Independent occlusion(HELEN68) , AP: 87.84%
HPM−occ(HELEN68) , AP: 84.11%
DPM(HELEN68) , AP: 82.47%

DPM(MULTIPE68) , AP: 77.81%
Cascade DPM(AFLW21) , AP: 77.61%

0 0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

 

 

Multi−resolution HPM(HELEN68) , AP: 79.04%
HPM(HELEN68) , AP: 77.60%

Independent occlusion(HELEN68) , AP: 77.58%
HPM−occ(HELEN68) , AP: 70.82%
DPM(HELEN68) , AP: 67.47%

DPM(MULTIPE68) , AP: 59.26%
Cascade DPM(AFLW21) , AP: 60.50%

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

 

 

Multi−resolution HPM(HELEN68) , AP: 97.23%
HPM(HELEN68) , AP: 97.65%

Independent occlusion(HELEN68) , AP: 97.66%
HPM−occ(HELEN68) , AP: 97.40%
DPM(HELEN68) , AP: 97.24%

DPM(MULTIPE68) , AP: 94.55%
Cascade DPM(AFLW21) , AP: 96.69%

(a) UCI-OFD (b) UCI-OFD occluded (c) UCI-OFD visible

Fig. 10: Precision-Recall curves of face detection on our UCI-OFD dataset (a) for all of the faces, (b) occluded subset
and (c) visible subset. On the visible subset our model, DPM retrained on HELEN68 and Cascade DPM [35] have almost
similar performances, but our model significantly outperforms these methods on the occluded subset and it has a better
overall performance. Cascade DPM uses many accelerate techniques, which may reject some of the faces. Its maximum
recall for the visible faces is near 100%, while its maximum recall for the occluded faces is only 60%. The initial drop
in the Precision-Recall of this method for the occluded subset is because its returned bounding boxes for some of the
high scored occluded faces are not accurate and do not have the minimum 0.5 overlap with the ground-truth bounding
boxes.

model has a high and a low-resolution model for each view-
point. The high resolution model has the same structure
as our trained model for landmark localization except that
parts are represented as 3x3 HoG cells rather than 5x5.
The low-resolution model has 7 parts (right eye, left eye,
nose, mouth, chin, left jaw and right jaw) each of which is
represented by 7x7 HoG cells with the spatial bin size of 4.
Each part has one shape mixture and 2 occlusion mixtures
(visible or occluded). The heights (eyebrow to chin) of the
large model and small model are about 100 and 60 pixels
respectively. To detect even smaller images, we upsample
input images by a factor of 2 to allow for detection of faces
as small as 30 pixels. We trained this model using the same
1758 positive examples from HELEN68 and generated 8
virtual positive examples per example. For negative images
we used 6000 images from the PASCAL VOC 2010 trainval
set which do not contain people.

Detection on FDDB: We evaluated our multi-resolution
model on the widely used FDDB dataset. This dataset
contains 5171 faces in a set of 2845 images. Faces are
annotated by ellipses in this dataset and are as small as
20 pixels in height. To match that, we map our predicted
keypoint locations to ellipses using a linear regression
model. FDDB has 10 folds and the ROC curves are the
average over the results of these folds. To compute ellipses
for each fold, we learnt the linear regression coefficients
using examples from the other 9 folds.

We used the standard evaluation protocol for this dataset
and compared our method with the top published results
available on the FDDB website [34]. The continuous ROC
curve for our method and leading methods are shown in
Fig. 9 plotted on a semi-log scale. Our result is highly
competitive with the top results. The model has better
performance on the continuous ROC evaluation relative to

other methods because it can predict location of parts and
compute accurate bounding ellipses around the faces.

We point out that our model is trained on near frontal
faces and only includes mixtures for near frontal view-
points, while this dataset has many side view faces. Because
the HPM can handle occlusion it still can detect some
side view faces as long as the appearance of the visible
parts is close to their frontal view appearance. We believe
adding more viewpoint to the model will likely improve
performance further on this dataset.

UCI Occluded Face Detection (OFD-UCI) Dataset:
FDDB has a few occluded faces, but most of the faces are
fully visible with many low resolution and side view faces.
In order to better measure the ability of our model to handle
detection of occluded faces, we assembled a preliminary
dataset for occluded face detection consisting of 61 images
from Flickr containing 766 labeled faces. Of the faces
in these images, 430 include some amount of occlusion.
Most of the faces are near frontal and vertical. Height
(eyebrow to chin) of the smallest face is about 40 pixels.
Precision/Recall curves of face detection of multi-resolution
HPM, HPM, HPM-occ, DPM and Cascade DPM [35] are
shown in Fig. 10(a). We further break down performance,
plotting Precision/Recall curves for the subset of faces
with some amount of occlusion in (b) and fully visible in
(c). Precision and recall for occluded subset of faces are
calculated as below:

Precisiono =
tpo

tpo + fp
,Recallo =

tpo
tpo + fno

where tpo and fno show number of correct detection and
miss detection of occluded faces, respectively. Our method
significantly outperforms other methods on the occluded
subset and the performance of all of the methods are
almost equal on the visible subset. Fig. 11 shows example
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detection results produced by the model on cluttered scenes
containing many overlapping faces.

6 DISCUSSION AND CONCLUSION

Our experimental results demonstrate that adding coherent
occlusion and hierarchical structure allows for substantial
gains in performance for keypoint localization and detection
in part models. Our final HPM outperforms previously
published results on the challenging COFW dataset in
terms of keypoint localization accuracy and shows robust
generalization across different training and test sets.

In images with relatively little occlusion, the HPM gives
similar detection and localization performance to other
part-based approaches, e.g. DPM, but is significantly more
robust to occlusion. Our results also suggest that when it is
useful to determine exactly which parts are occluded (e.g.,
for later use in face identification), independent occlusion
makes weaker predictions than our part occlusion mixtures
which enforce coherence between neighboring keypoints.

In comparing pose regression and part-based models,
there seem to be several interesting trade-offs. In our exper-
iments, we see a general trend in which error distribution
curves for pose regression and part-based models cross,
suggesting that RCPR yields very accurate localization
for a subset of images relative to the HPM but fails for
some other proportion even at very large error thresholds.
Unlike pose regression, the part model performs detection,
eliminating the need for detection as a pre-process and
improving robustness. In particular, we are able to detect
many heavily occluded faces which would not be detected
by a standard cascade detector. We find that the HPM tends
to generalize well across datasets suggesting it avoids some
overfitting problems present in pose regression.

The run-time of our model implementation built on
dynamic programming lags significantly behind those
of regression-based, feed-forward approaches. Our model
takes ∼10s to run on a typical COFW image, roughly
100x slower than RCPR. On the other hand, pose regression
depends critically on having good initialization while the
part model approach can be used for both simultaneous
detection and localization.

Finally, we note that there are many avenues for future
work. Performance depends on the graphical independence
structure of the model which should ideally be learned from
data. While our model implicitly represents the pattern of
part occlusions, it does not integrate local image evidence
for the occluder itself. A natural extension would be to
add local filters which detect the presence of an occluding
contour between the occluded and non-occluded keypoints.
Such filters could be shared across parts to avoid increasing
too much the overall computation cost while moving closer
to our goal of explaining away missing object parts using
positive evidence of coherent occlusion.
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Fig. 11: Examples of detection and localization for images from our UCI-OFD dataset (rows 1-2) and images containing
occlusion from FDDB dataset (rows 3-4). Detections indicated with only 7 keypoints correspond to responses from the
low-resolution model component. Ellipses are predicted on FDDB images by linear regression from keypoint locations
to ellipse parameters.


