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Abstract: We have developed a program, GENECUT, for analysing datasets from gene 
expression profiling.  GENECUT is based on a pairwise clustering method 
known as Normalized Cut  [Shi and Malik, 1997].  GENECUT extracts global 
structures by progressively partitioning datasets into well-balanced groups, 
performing an intuitive k-way partitioning  at each stage in contrast to 
commonly used 2-way partitioning schemes.  By making use of  the Nyström 
approximation, it is possible to perform clustering on very large genomic 
datasets. 
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1. INTRODUCTION 

DNA microarray technology empowers biologists to analyse thousands of 
mRNA transcripts in parallel, providing insights about the cellular states of 
tumor cells, the effect of mutations and knockouts, progression of the cell 
cycle, and reaction to environmental stresses or drug treatments. Gene 
expression profiles also provide the necessary raw data to interrogate cellular 
transcription regulation networks. Efforts have been made in identifying cis 
acting elements based on the assumption that co-regulated genes have a 
higher probability of sharing transcription factor binding sites. 
 

1 



2 Charless Fowlkes, Qun Shan, Serge Belongie, and Jitendra Malik 
 
There is a well-recognized need for tools that allow biologists to explore 
public domain microarray datasets and integrate insights gained into their 
own research. One important approach for structuring the exploration of 
gene expression data is to find coherent clusters of both genes and 
experimental conditions. The association of unknown genes with 
functionally well-characterized genes will guide the formation of hypotheses 
and suggest experiments to uncover the function of these unknown genes. 
Similarly, experimental conditions that cluster together may affect the same 
regulatory pathway. 

  
Unsupervised clustering is a classical data analysis problem that is still an 
active area of intensive research in the computer science and statistics 
communities [Ripley, 1996]. Broadly speaking, the goal of clustering is to 
partition a set a feature vectors into k groups such that the partition is “good” 
according to some cost function. In the case of genes, the feature vector is 
usually the degree of induction or suppression over some set of experimental 
conditions. As of yet, there is no clear consensus as to which algorithms are 
most suitable for gene expression data. 
 
Clustering methods generally fall into one of two categories: central or 
pairwise [Buhmann, 1995]. Central clustering is based on the idea of 
prototypes, wherein one finds a small number of prototypical feature vectors 
to serve as “cluster centers”. Feature vectors are then assigned to the most 
similar cluster center. Pairwise methods are based directly on the distances 
between all pairs of feature vectors in the data set. Pairwise methods don’t 
require one to solve for prototypes, which provides certain advantages over 
central methods. For example, when the shape of the clusters are not simple, 
compact clouds in feature space, central methods are ill-suited while 
pairwise methods perform well since similarity is allowed to propagate in a 
transitive fashion from neighbor to neighbor.  A family of genes related by a 
series of small mutations might well exhibit this sort of structure, 
particularly when features are based on sequence data.  
 
Clustering algorithms can also often be characterized as greedy or global in 
nature. The agglomerative clustering method used by [Eisen et al., 1998] to 
order microarray data is an example of a greedy pairwise method: it starts 
with a full matrix of pairwise distances, locates the smallest value, merges 
the corresponding pair, and repeats until the whole dataset has been merged 
into a single cluster. Because this type of process only considers the closest 
pair of data points at each step, global structure present in the data may not 
be handled properly. 
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Another unsupervised clustering approach that has been applied to gene 
expression analysis is the self –organizing map [Tamayo et al., 1999]. While 
this technique is useful for structuring data sets in some applications, the 
lack of an explicit “energy function” has made it difficult to analyze. 
 
Our approach to clustering gene expression data is based on the Normalized 
Cuts (NCut) method introduced by Shi and Malik [1997, 2000]. Normalized 
Cuts is a pairwise clustering that finds a partitioning of the data set into well-
balanced groups. The resulting clustering minimizes a well-defined, global 
cost function. Experience in the field of computer vision, VLSI layout and 
parallel computing suggests that spectral graph methods [Chung, 1997] such 
as Normalized Cuts provide excellent results on a wide range of practical 
problems. In Section 2, we outline the NCut method for clustering and in 
Section 3, demonstrate the application of NCut to the Rosetta yeast gene 
expression dataset [Hughes et al., 2000]. 

2. CLUSTERING WITH NORMALIZED CUT 

In this section we describe the NCut cost function, which provides a measure 
of cluster quality that takes into account both the within-group similarity and 
the between-group dissimilarity.  We also outline the algorithm used for 
finding a clustering of the data that has low cost.  The reader is referred to 
[Shi and Malik, 2000] and the references therein for additional detail. 

2.1 The NCut Criterion 

We use the Pearson correlation between vectors of expression data to 
capture the degree of similarity between two genes or two experiments. We 
will apply the same clustering algorithm to both the problem of clustering 
genes and that of clustering experiments so in this section we refer 
generically to the items being clustered. Let Wij be the Pearson correlation 
between the ith and jth data points. First consider the case of partitioning the 
dataset into two groups (bi-partitioning). Let V denote the complete set of 
data which is broken into subsets A and B. The NCut cost function is 
defined as  
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are graph-theoretic terms that quantify the cost of this partition (the cut) and 
the total connection of the subset to the whole set (the association). 
Normalizing by the association term makes NCut different from graph 
theoretic techniques based on min-cut (applied to genomic data by [Sharan 
and Shamir, 2000] which can generate highly unbalanced clusters and 
require elaborate post-processing ([Shi and Malik, 2000] provides a 
comparison). 
 
While finding the A-B partition that minimizes the NCut criterion is an NP-
hard optimization problem, it is possible to relax the constraints in order to 
obtain a closed form eigenproblem that yields high quality approximations. 
The problem is formulated in terms of minimizing the Rayleigh quotient, 
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where W is the matrix whose entries are Wij, D is a diagonal matrix with Dii 
= Σ Wij and y is a partition indicator vector. If we allow y to take on 
continuous values then the minimum is obtained by the second leading 
eigenvector of the generalized eigenvalue problem (D-W)y=λDy. 

2.2 K-Way Partitioning 

The NCut bi-partitioning technique has been applied to genomic expression 
data by [Xing and Karp, 2001] for a data set containing two clusters.  
However, for the analysis of a large compendium of expression data, we 
would expect there to exist far more than two clusters.  Generalization to the 
case of more than two groups can be obtained in a number of ways.  One 
method is to apply bi-partitioning recursively on A and B.   Another method 
is to compute k leading eigenvectors instead of just the second one: this 
leads to a k-dimensional embedding that is amenable to clustering with 
simple central methods such as k-means [Duda and Hart, 1973].  The 
approach taken in our present work is a combination of these two methods.  
We perform a recursive k-way clustering where k is automatically chosen at 
each level to minimize the k-way NCut criterion defined as 
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We find that this criterion constitutes an effective form of model selection 
and yields natural clusters while avoiding the artificial constraint of bi-
partitioning or pairwise merging schemes. 

2.3 Clustering Large Datasets 

Our algorithm was prototyped in MATLAB where it takes less than a minute 
to cluster the 560 genes used in our experiments.  For very large problems, 
the computation and memory requirements to solve the eigenproblem can 
become a limiting factor for interactive data analysis.  To avoid these costs, 
we can exploit the Nyström Approximation which allows one to extrapolate 
the solution to a large clustering problem using a small subset of the data 
[Fowlkes et al., 2001]. 
  
This approximation exploits redundancy between rows of the Wij matrix by 
choosing a small subset of the genes and computing their similarity to every 
other gene in the dataset.  This thin strip of the matrix is then used to 
compute a direct numerical approximation to the eigenvectors needed for 
partitioning.  The memory and processing expenses grow in proportion to 
the number of samples rather than the total number of data points so by 
using this approximation, our method should extend efficiently to the 
analysis of complete genomes with thousands of experiments. 

3. RESULTS 

We have built a system for interactively browsing the results of the NCut 
algorithm called GENECUT.  The clustering results presented in this paper 
along with prototype software are available at 
http://www.cs.berkeley.edu/~fowlkes/bio/. In this section we present some 
results that indicate our algorithm is capable of finding clusters that exist in 
the data.  A robust algorithm is extremely important since true clusters in a 
data set are unknown and poor clustering results could easily be misleading.  
While it is difficult to evaluate the performance of clustering algorithms 
quantitatively, we are able to point to clusters of well characterized genes 
which have closely related functions, suggesting that the algorithm is 
effective. 
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Figure 1. The result of performing a recursive, k-way partitioning on a set of 560 genes and 
123 experiments.  Genes are arrayed along the x-axis and experiments along the y-axis.  The 
contents of the cluster indicated by the white circle are listed in Table 1 and Table 2.  The 
color-coding on the tree indicates the cost of the associated k-way cut.  The contents of other 
clusters are available for interactive exploration: http://www.cs.berkeley.edu/~fowlkes/bio/  
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Figure 1 gives a visual overview of the clustering analysis presented by 
GENECUT for the Rosetta gene expression dataset [Hughes et al., 2000].  
The output of the clustering algorithm is presented in the form of a web page 
that allows the user to traverse up and down through the layers of the tree 
structure in both the experimental and gene dimensions.  The user can click 
on clusters in the overview image in order to view the genes and 
experiments in that cluster.  Gene descriptions include links to detailed 
descriptions and a link that invokes a BLAST search of the Saccharomyoes 
Genome Database using the 500 bp upstream sequence. 
 
We expect that clusters of genes showing similar expression patterns are 
likely to share some conservative regulatory motif.  The ability to do a 
BLAST query quickly is a first step towards seeking similar transcription 
factor binding sites.  We are currently exploring DNA motifs associated with 
several of these clusters.  Automatic identification of these putative motifs 
would clearly be helpful in experimental design. 
 

Experiment # Description  
9 erg2 Deletion 
10 erg3 Deletion 
107 hmg1  Deletion 
61 Yer044c (haploid) Deletion 
29 ERG11 (tet promoter) Shutdown 
35 HMG2 (tet promoter) Shutdown 
73 Lovastatin drug treatment 
82 Terbinafine drug treatment 
71 Itraconazole drug treatment 

Table 1. Experiment cluster #5, an interesting group of experiments found by GENECUT 
(shown circled in Figure 1). This cluster contains experimental conditions relating to the 
sterol synthesis pathway. 
 
Table 1 shows a cluster along the experimental axis that groups together a 
set of experiments that all involve perturbations of sterol biosynthesis.  To 
extract global features from an experimental cluster like these sterol 
synthesis experiments, we sort the gene clusters by their normalized 
variances.  We reason that the makeup of gene clusters with high variance 
across a particular experiment cluster is likely to be biologically relevant.  
 
Table 2 lists the gene cluster that has the highest mean variance in 
expression level for the sterol synthesis experiments cluster.  This gene 
cluster makes biological sense and also agrees with a visual examination of 
the datawset 
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Gene System Name Description 
1 YHR007C [ERG11] Cytochrome P450 (lanoterol 14 alpha-demethlase), 

essential for biosynthesis of ergosterol 
110 YDR530C [APA2] ATP adenylyltransferase II 
169 YGL001C [ERG26] C-3 sterol dehydrogenase, C-4 decarboxylase, required 

for ergosterol biosynthesis 
195 YGR049W [SCM4] Protein that suppressed temperature-sensitive allele of 

CDC4 when overexpressed 
197 YGR060W [ERG25] C-4 sterol methyl oxidase: enzyme of the ergosterol 

biosynthesis pathway 
210 YGR175C [ERG1] Squalene monooxygenase (squalene epoxidase), an 

enzyme of the ergosterol biosynthesis pathway 
279 YJL113W Unknown 
337 YKRO53C [YSR3] Sphingoid base-phosphate phosphatase, putative 

regulator of sphingolipid metabolism and stress response 
344 YLL0112W Protein with similarity to human triacylglycerol lipase 
380 YML008C [ERG6] S-adenosylmethionine delta-24-sterol-C-

methyltransferase, carries out methylation of zymosterol as part 
of the ergosterol biosynthesis pathway 

392 YMR015C [ERG5] Cytochrome P450, delta 22(23) sterol desaturase, 
catalyses an intermediate pathway step in the biosynthesis 
pathway 

434 YNL111C [CYB5] Cytochrome b5 
491 YOR237W [HES1] protein implicated in ergosterol biosynthesis, member of 

the KES1/HES1/OSH1/YKR003W family of oxysterol-binding 
(OSBP) proteins 

511 YOR394W Member of the seripauperin (PAU) family (YPL282C and 
YOR394W code for identical proteins) 

523 YPL272C Unknown 

Table 2. Gene cluster #10 found by GENECUT contains genes related to sterol biosynthesis.  
This cluster had the largest variance across experimental conditions for the set of experiments 
in experiment cluster #5 
 
Many easily identified clusters discussed in [Hughes et. al. 2000] were also 
found by the GENECUT algorithm.  This is notable since the two algorithms 
employed take quite different approaches (local agglomerative vs. global 
divisive).  Figure 2 contrasts the genes found by our algorithm with those of 
[Hughes et. al. 2000] for the sterol gene cluster (our cluster #10).  Genes that 
appear in the intersection of the two clusters are presumed to be related with 
high confidence while those which only appear in a single cluster require 
more experiments to pin down.  Since the agglomerative clustering 
algorithm produces a dendrogram whose leaves are individual genes, the 
cluster shown is actually a manually selected sub-tree. 
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Figure 2. A comparison of the “sterol” cluster found by [Hughes et. al. 2000] (dotted circle) 
and that found by the GENECUT algorithm (solid circle).  As with many other clusters, there 
is significant overlap. 

4. CONCLUSIONS 

In this report, we developed a novel application of the NCut algorithm to the 
problem of gene expression profile analysis.  The algorithm performs 
favourably by focusing on the global features and recursively partitioning 
the dataset into clusters.  We demonstrate the utility of NCut in extracting 
global features from an experiment cluster, and further explore regulatory 
sequences within the representative gene clusters.  It may be possible to use 
this algorithm effectively in conjunction with hierarchical clustering tools in 
order to perform “harvesting” of dendrograms and allow rapid exploration of 
genomic data sets. We envision that this algorithm can ultimately be used as 
a general clustering tool in various areas of genomics research such as 
protein classification, DNA sequence data, and drug sensitivity profiling.   
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