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Abstract

Spectral graph theoretic methods have recently shown
great promise for the problem of image segmentation, but
due to the computational demands, applications of such
methods to spatiotemporal data have been slow to appear.
For even a short video sequence, the set of all pairwise
voxel similarities is a huge quantity of data: one second of
a 256�384 sequence captured at30Hz entails on the order
of 1013 pairwise similarities. The contribution of this paper
is a method that substantially reduces the computational re-
quirements of grouping algorithms based on spectral parti-
tioning, making it feasible to apply them to very large spa-
tiotemporal grouping problems. Our approach is based on a
technique for the numerical solution of eigenfunction prob-
lems known as the Nyström method. This method allows
extrapolation of the complete grouping solution using only
a small number of “typical” samples. In doing so, we suc-
cessfully exploit the fact that there are far fewer coherent
groups in an image sequence than pixels.

1 Introduction

The Gestalt school introduced several cues that are im-
portant to visual grouping including proximity, similarity,
and common fate. Approaching the problem of grouping
from a computational standpoint requires operationalizing
such cues and combining them in an integrated framework.
One method for combining both static image cues and mo-
tion information is to consider all images in a video se-
quence as a space-time volume and attempt to partition this
volume into regions that are coherent with respect to the
various grouping cues. This perspective is supported by
evidence from psychophysics [9] that suggests spatial and
temporal cues are treated jointly in the human visual sys-
tem. The insight of considering a video signal as three di-
mensional for purposes of analysis goes back to Adelson
and Bergen [1] and Baker et al. [4]. Volumetric segmen-
tation has also been treated extensively in the literature on

MRI processing [3], however, this domain lacks the causal
structure (in the linear systems sense) possessed by video
and doesn’t consider cues that are unique to motion such as
common fate.

Unified treatment of the spatial and temporal domains
is also appealing as it could solve some of the well known
problems in grouping schemes based on motion alone (e.g.
layered motion models [23, 22]). For example, color or
brightness cues can help to segment untextured regions for
which the motion cues are ambiguous and contour cues can
impose sharp boundaries where optical flow algorithms tend
to drag along bits of background regions.

One computational framework for grouping within the
space-time volume is to compute ak-way partitioning of a
weighted graph where each node represents a volume unit
(voxel) and the edge weights encode affinity between the
voxels. Approaches in this framework have been developed
and applied extensively to spatial segmentation of single
images [19, 12, 8, 15, 14]. Unfortunately such successes
have been slow to carry over to the case of spatiotemporal
data.1 Indeed, the conclusions of a recent panel discussion
on spatiotemporal grouping [5] are that approaches in which
the image sequence is treated as a multidimensional volume
in x; y; t hold the greatest promise, but that efforts along
these lines have been hampered largely by computational
demands. The contribution of this paper is aimed directly
at ameliorating this computational burden, thus making it
feasible to extend the ideas of powerful pairwise grouping
methods to the domain of video.

We formulate the grouping problem in the normalized
cut (NCut) framework [19] which requires the solution of an
n�n eigenproblem, wheren is the total number of voxels in
the space-time volume. (For example,n � 3� 106 for one
second of a 256�384 image sequence captured at 30Hz.)
Our approach to taming the computational demands of this
problem is based on an approximation technique known as
the Nyström method, originally developed for the numerical
solution of eigenfunction problems. In short, this approach
exploits the fact that the number of coherent groups in an

1Some preliminary steps in this direction were made by [18].
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image sequence is considerably smaller than the number of
voxels. It does so by extrapolating the complete grouping
solution using the solution to a much smaller problem based
on a few random samples drawn from the image sequence.

The structure of this paper is as follows. In Section 2 we
discuss grouping cues and review the NCut grouping algo-
rithm. We highlight our application of the Nystr¨om method
to the NCut grouping formulation in Section 3. Results are
discussed in Section 4 and we conclude and ponder future
work in Section 5.

2 Framework for Spatiotemporal Grouping

2.1 Spatiotemporal Grouping Cues

We would like to identify prominent groups within a
space-time volume. In order to do so, it is first necessary
to compute a measure of affinity between each unit of vol-
ume (voxel). Taking our cue from the Gestalt school, we
consider proximity, similarity and common fate. We at-
tach three features to each voxel in the sequence: location
(x; y; t), intensity and color(L; a; b), and an optical flow
vector(u; v) estimated between subsequent pairs of frames.
We then compute the affinity between pointi andj as

Kij = e�
1

2
(xi�xj)

T��1(xi�xj)

wherexi is the feature vector associated with theith point
in the image and� is a diagonal matrix whose entries are
free parameters of the algorithm. The elements ofK take
on values between0 and1 which indicate how likely it is
that two voxels belong to the same group. The diagonal
entry of� associated with each cue is based on the expected
variation within a group.

2.2 Partitioning with Normalized Cuts

Once the appropriate affinity function has been chosen,
we would like to find a partitioning of the voxels into groups
where each group has strong within group affinity and weak
between group affinity. We employ the multiple eigenvector
version of NCut [10] which embeds the voxels into a low di-
mensional Euclidean space such that significant differences
in the normalized affinities are preserved while noise is sup-
pressed. Thek�means algorithm can then be used to dis-
cover groups of voxels that belong to the same region.

To find an embedding, we compute the matrix of eigen-
vectorsV and eigenvalues� of the system

(D�1=2KD�1=2)V = V �

whereD is a diagonal matrix with entriesDii =
P

j Kij .
The theith embedding coordinate of thejth voxel is then

given by

Eij =
Vi+1;jp

(1� �i+1)Djj

where the eigenvectors have been sorted in ascending order
by eigenvalue.

Unfortunately, the need to solve this system presents
a serious computational problem. SinceK grows as the
square of the number of voxels in the sequence, for even
very short video sequences it quickly becomes infeasible to
fit K in memory, let alone compute its leading eigenvectors.
One approach to this problem has been to use a sparse, ap-
proximate version ofK in which each voxel is connected
only to a few of its nearby neighbors in space and time and
all other connections are assumed to be zero [18]. While
this makes it possible to use efficient, sparse eigensolvers
(i.e. Lanczos) the effects of this process are difficult to rea-
son about. We propose an alternative approximation based
on sampling in which we are able to keep all voxel simi-
larities at the expense of some numerical accuracy in their
values. Our approach also has the advantage of providing a
clear quantification of the error introduced.

3 The Nyström Approximation

The Nyström method is a technique for finding numeri-
cal approximations to eigenfunction problems of the form:

Z b

a

K(x; y)�(y)dy = ��(x)

We can approximate this integral equation by evaluating it
at a set of evenly spaced points�1; �2; : : : �n on the interval
[a; b] and employing a simple quadrature rule,

(b� a)

n

nX
j=1

K(x; �j)�̂(�j) = ��̂(x) (1)

where�̂(x) is an approximation to the true�(x). To solve
(1) we setx = �i yielding the system of equations

(b� a)

n

nX
j=1

K(�i; �j)�̂(�j) = ��̂(�i) 8i 2 f1 : : : ng

Without loss of generality, we let[a; b] be [0; 1] and struc-
ture the system as the matrix eigenvalue problem:

K�̂ = n�̂�

whereKij = K(yi; yj) is the Gram matrix and� =
[�1�2 : : :�n] aren approximate eigenvectors with corre-
sponding eigenvalues�1; �2; : : : �n. Substituting back into
equation (1) yields theNystr̈om extensionfor each�̂i

�̂i(x) =
1

n�i

nX
j=1

K(x; �j)�̂i(�j) (2)



3.1 Approximating the Eigenvectors of Affinity
Matrices

The preceding analysis suggests that it should be possi-
ble to find approximate eigenvectors of a large Gram matrix
by solving a much smaller eigenproblem using only a sub-
set of the entries and employing the Nystr¨om extension to
fill in the rest. This is indeed the case. In this section we
show an alternate analysis which relies purely on matrices
and provides additional insight about the nature of the ap-
proximation.

Consider a Gram matrixK 2 Rp�p partitioned as fol-
lows

K =

�
A B

BT C

�
(3)

with A 2 Rn�n, B 2 Rn�m, andC 2 Rm�m where we
will take n to be much smaller thanm. SinceK is positive
definite, we can write it as the inner product of a matrixZ

with itself: K = ZTZ. If K is of rankn and the rows of
the submatrix[A B] are linearly independent,Z can be
written using onlyA andB as follows. LetZ be partitioned
Z = [X Y ] with X 2 Rp�n andY 2 Rp�m. Rewriting
K we have:

K = ZTZ =

�
XTX XTY

Y TX Y TY

�

Putting this in correspondence with (3) givesA = XTX

andB = XTY . Using the diagonalizationA = U�UT ,
whereUTU = I we obtain

X = �1=2UT

Ŷ = (XT )
�1
B = ��1=2UTB

Combining the two intôZ = [X Ŷ ] 2 Rp�p gives us

K̂ =

�
XTX XT Ŷ

Ŷ TX Ŷ T Ŷ

�

=

�
XTX XT��1=2UTB

(��1=2UT )TX (��1=2UTB)T��1=2UTB

�

=

�
A B

BT BTA�1B

�

If the rank ofK is greater thann or we fail to choose in-
dependent rows, then̂K is an approximation toK whose
quality can be quantified as the norm of the Schur comple-
mentkC � BTA�1Bk. The size of this norm is governed
by the extent to whichC is spanned by the rows ofB.

Given this expression for̂K, the approximate eigenvec-
tors ofK can be written in matrix form. Using again the
diagonalizationA = U�UT , we have

K̂ = �U��UT ; with �U =

�
U

BTU��1

�

d1 = sum([A;B’],1);
d2 = sum(B,1) + sum(B’,1)*inv(A)*B;
dhat = sqrt(1./[d1 d2])’;
A = A.*(dhat(1:n)*dhat(1:n)’);
B = B.*(dhat(1:n)*dhat(n+(1:m))’);
Asi=sqrtm(inv(A));
Q=A+Asi*B*B’*Asi;
[U,L,T]=svd(Q);
V=[A;B’]*Asi*U*inv(sqrt(L));
for i = 2:nvec+1

E(:,i-1) = V(:,i)./V(:,1);
E(:,i-1) = E(:,i-1)/sqrt(1-L(i,i));

end

Figure 1. Example MATLAB code for finding the first
nvec embedding vectors of the normalized affinity matrix
given unnormalized submatricesA of size n�n and B of
sizen�m.

The lower block of�U is clearly just matrix notation for the
repeated application of the Nystr¨om extension as given in
equation (2). The only remaining detail is that the columns
of �U are not necessarily orthogonal. This is addressed as
follows. LetA1=2 denote the symmetric positive definite
square root ofA, defineQ = A + A�1=2BBTA�1=2 and
diagonalize it asQ = R�̂RT . Now define the matrix̂V as

V̂ =

�
A

BT

�
A�1=2R�̂�1=2 (4)

It can then be shown that̂V and�̂ diagonalizeK̂, i.e. K̂ =
V̂ �̂V̂ T andV̂ T V̂ = I . Due to lack of space we omit the
proof.

3.2 Approximate Normalized Cuts

To apply the matrix form of the Nystr¨om extension to
NCuts, it is necessary to compute the row sums ofK̂.
This is possible without explicitly evaluating theBTA�1B

block since

d̂ = K̂1 =

�
A1m + B1n

BT
1m +BTA�1B1n

�

=

�
ar + br

bc +BTA�1br

�
(5)

wherear; br 2 Rm denote the row sums ofA andB, re-
spectively, andbc 2 Rn denotes the column sum ofB.

With d̂ in hand, the blocks of̂D�1=2K̂D̂�1=2 that are
needed to approximate the leading eigenvectors are given
as

Aij  
Aijq
d̂id̂j

; i; j = 1; : : : ;m
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Figure 2. The behavior of the approximation error for nat-
ural images with increasing numbers of samples. The cues
used here are color, intensity and proximity. The error bars
indicate one standard deviation taken over a set of 100 nat-
ural images chosen from the Corel database. Recall that the
entries ofK range from 0 to 1 so error values shown here
are on the order of a few percent.

and

Bij  
Bijq
d̂id̂j+m

; i = 1; : : : ;m; j = 1; : : : ; n

All that remains is to apply equation (4) as before. The
entire procedure for computing the normalized embedding
coordinates givenA andB is outlined in Figure 1 in the
form of some simple MATLAB code.

3.3 Computational Demands

Once the affinities[A B] have been computed, the
most expensive operation is the diagonalization ofA and
Q. These operations scale asO(n3) wheren is the number
of samples employed in the approximation.

How many samples are required to achieve a good parti-
tioning? The answer in practice seems to be very few. We
studied the approximation quality of an affinity matrix con-
sisting of color and proximity cues for a set of one hundred
480 � 320 natural images chosen from the Corel database
of stock photos. We chose proximity and color parameters
�prox = 400 and�color = 0:01 and the sample coordinates
were chosen uniformly at random. Since it’s not feasible to
holdC in memory, the error was estimated by considering
submatrices ofC. Figure 2 demonstrates the fall-off in error
as the number of samples are increased. The error bars indi-
cate one standard deviation over the set of images. Without

providing a perturbation-theoretic argument, we note that
the subjective quality of the eigenvectors follows a similar
pattern as one might expect.

A simple analysis of this rapid decay goes as follows.
In the limiting case that the affinity function is a perfect
indicator of whether two points lie in the same segment,
then a single sample from each segment would be sufficient
to span the rows ofK. This clearly provides leverage to the
intuition that segmentation should scale with the number of
segments rather than the number of pixels in the image.

3.4 Related Work on Approximation

E. J. Nyström published his method in the late 1920’s
[11]. Its use in approximating solutions to integral equa-
tions is well known for its simplicity and accuracy [2, 6, 13].
The Nyström method has also been recently applied in the
kernel learning community [24] for fast approximate Gaus-
sian process classification and regression. As noted in [24],
this approximation method directly corresponds to the ker-
nel PCA feature space projection technique of [17]. The au-
thors of [20] present a greedy method for selecting the best
rows/columns to use for the approximation. A related work
in the area of document analysis is that of [7], wherein only
the off-diagonal blocks of the affinity matrix are known,
i.e. only bipartite weights are available. The author then ap-
plies the Normalized Cut method, which reduces to a simple
SVD on the non-zero blocks, in order to accomplish “co-
clustering” of documents and keywords.

4 Results

We provide several examples of video segmentation us-
ing our algorithm. Each of the results shown make use of
100 samples drawn at random from the first, middle and
last frame in the sequence. Figure 3 shows the perfor-
mance of our algorithm on the flower garden sequence. A
proper treatment would require dealing with the texture in
the flowerbed and the illusory contours that define the tree
trunk. However, the discontinuities in local color and mo-
tion alone are enough to yield a fairly satisfying segmenta-
tion.

Figure 4 demonstrates segmentation of a relatively un-
clutered scene. Processing the entire sequence as a volume
automatically provides correspondences between segments
in each frame. We note that using motion alone would
tend to track the shadows and specularities present on the
background and fail to find the sharp boundaries around the
body. Figure 5 shows performance in a more complicated
sequence involving multiple moving objects in addition to
camera translation. On a800MHz Pentium III processor,
segmenting a120� 120� 5 voxel sequence (i.e. Figure 5)
takes less than 1 minute in MATLAB.



5 Conclusion

We have introduced an approximate version of NCut
based on the Nystr¨om method which makes it possible to
solve very large grouping problems efficiently. We have
demonstrated the application of this technique to spatiotem-
poral data with encouraging results. By simultaneously
making use of both static cues (color, intensity, location in
the image) and dynamic cues (optical flow, location in time)
we are able to find coherent groups within a variety of video
sequences.

More work is clearly needed in order to achieve high
quality segmentation on general video. Of key importance
is the incorporation of more sophisticated grouping cues
and gating mechanisms. For example, there are many static
image cues that can be extended to the domain of video. If
the boundary of a region is indicated by a strong contour,
it will sweep out a surface in the space-time volume. Vox-
els that are on opposite sides of such an intervening sur-
face shouldn’t be as likely to belong to the same group.
Likewise, texture has a space-time equivalent in the form
of dynamic textures (e.g. tree leaves blowing in the wind)
[21, 16].

Our hope is that the approximation method we have pre-
sented will facilitate the further development of segmenta-
tion methods which work directly on the spatio-temporal
volume.
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Figure 3. The Flower Garden Sequence: Each column represents our segmentation of a frame from the sequence of four
images shown in the top row. Each row shows slices through a space-time segment. It’s important to note that the algorithm
provides segment correspondence between frames automatically. The image dimensions are120� 80 pixels.



Figure 4. The Leap: The original frames (120� 80 pixels) are shown in the left column. Each column shows slices through
a space-time segment.



Figure 5. The Firetruck: The original120 � 120 pixel sequence is shown across the top row. The remaining rows indicate
individual segments.


