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Abstract

This paper provides an overview of our e�orts to de-

velop algorithms and systems that are able to \mine"

useful information from large image collections. One

of the core capabilities targeted is the ability to �nd in-

stances of speci�c objects in images. Such a capability

would greatly enhance analysis of NASA's existing im-

age archives and, if coupled with an autonomous agent

that is able to act on the mined information, would en-

able new forms of scienti�c exploration.
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1 Introduction

There are two trends developing within JPL and

NASA that have created a demand for systems that

can automatically analyze images and extract seman-

tically meaningful information. First, the amount of

data returned from spacecraft missions has greatly

increased due to improvements in image acquisition,

communications, and storage technology, but the abil-

ity of humans to manually analyze data has remained

constant. Second, it has been recognized that placing

intelligent algorithms onboard a spacecraft will lead

to more economical missions and enable new types of

scienti�c exploration.

Mining useful content from image collections is

very much an interdisciplinary endeavor that draws

upon expertise in computer vision, image understand-

ing, data mining, machine learning, databases, dis-

tributed/parallel computing, software design, and ar-

ti�cial intelligence. Unlike in traditional data mining,

there is considerable diÆculty involved just in deter-

mining the proper representation of the information.

The standard view of a dataset as a rectangular ta-

ble in which the rows are examples and the columns

are measurements of particular \attributes" doesn't

map well into the image mining domain. There are a

number of other diÆculties such as enabling users to

formulate queries to look for particular objects, pro-

viding the ability to �nd new types of objects without

reprogramming, and organizing the mined information

in such a way as to support further analysis and sci-

enti�c inquiry.

Despite these obstacles, there is one source of en-

couragement: humans can extract meaningful infor-

mation from images. Hence, we know that a solution

must exist. In contrast, in many \pure" data min-

ing tasks it is often unclear whether useful knowledge

can indeed be extracted from a mountain of abstract

data. In the remainder of the paper, we discuss in-

sights into the image mining problem that we have

gained through our e�orts to develop systems for an-

alyzing large datasets of planetary imagery.

Section 2 contains a survey of potential NASA-

related applications of image mining. Many of these

applications have analogs in domains closer to home

such as medical imaging, petroleum exploration, dig-

ital libraries and the Internet, surveillance, manage-

ment of natural resources, etc. System-level issues

involved in developing large-scale image mining prod-

ucts are discussed in Section 3. In Section 4 we de-

scribe some of the algorithms that we are using to

access image content. Section 5 provides a summary

and discussion of future directions.

2 Potential Applications

Systems that can automatically analyze images and

extract semantically meaningful information have a

number of applications both in mining large archived

datasets and in onboard spacecraft scenarios. Com-

munications bandwidth between remote spacecraft

and Earth is often extremely limited. Similarly, in

the ground-based setting, human analysts have \band-

width" constraints that limit the number of images

that can be examined in a day. Applying mining al-

gorithms to extract the interesting content can pro-

vide greater information throughput. Coupling min-

ing capabilities with an autonomous agent (e.g., a self-



commanding spacecraft or a steerable sensor) that can

take actions based on the mined information will lead

to exciting opportunities for new science and permit

feedback loops to be closed onboard (especially critical

in applications such as small body landing [14] where

light-time delays do not permit remote control from

Earth).

The Magellan mission [21], which performed de-

tailed global mapping of 98% of the surface of Venus,

provides a valuable illustration of the need for auto-

mated analysis of image content. Within this large

dataset (consisting of over 30,000 images on approx-

imately 200 CD-ROMs) there is a wealth of poten-

tial scienti�c information. For example, volcanism is

known to be one of the dominant geological processes

on Venus [25], and it has been estimated based on

lower resolution data that there are on the order of one

million small volcanoes in the Magellan dataset [1].

However, any comprehensive global study of the vol-

canoes' spatial distribution or relationship to other ge-

ological features is essentially impossible using man-

ual analysis. Image mining techniques have been de-

veloped and applied to portions of this dataset with

some degree of success [3].

Other examples abound. In cratering studies the

primary quantity of interest is the size-frequency dis-

tribution of craters, which can be used to assess the

relative ages of planetary and small body surfaces.

Using automatic detection and sizing techniques to

process the raw images directly into summary form

(size-frequency distributions) can potentially provide

enormous savings in labor while preserving the infor-

mation of interest.

A variation on the summarization theme is \intel-

ligent compression" in which regions around objects

of interest, rather than raw images, are returned by

spacecraft1. This idea is quite di�erent from tradi-

tional image compression, which involves no under-

standing of an image's content. In some cases, intel-

ligent compression may o�er reductions in data rate

of a thousand or more with no loss in quality of the

returned data. In contrast, traditional lossless image

compression o�ers factors of only two to three2.

Another use of mining is to provide focusing and

prioritization. For example, using a volcano recognizer

and spatial reasoning, a system could guide a human

user to a \short list" of areas having a high probability

of containing volcano �elds. The user could then focus

1A core set of raw images will always be part of the returned
data. Intelligent compression provides a way to maximize the
information return from any \discretionary" bandwidth.

2Note that traditional compression can be applied on top of
\intelligent" compression.

his initial analyses on these areas. The system acts as

an intelligent assistant that multiplies the human user.

Examples of image mining coupled with an au-

tonomous agent include retargeting (imaging a de-

tected object or event at higher resolution or with

specialty sensors), monitoring (vigilantly watching an

area while waiting for an event such as a volcanic erup-

tion), tracking (maintaining focus on a speci�c object

or event such as an atmospheric storm), and prioritiz-

ing (ordering the areas from which data is collected

based on visual content).

3 System-level Issues

In developing image mining capabilities we operate

from the viewpoint that any algorithms must be thor-

oughly tested and proven in the ground-based setting

to gain acceptance and ultimately to be deployed on

spacecraft missions. The testing required usually ne-

cessitates packaging the algorithms into a system that

can be used and evaluated by the domain experts (col-

laborating planetary scientists) as part of their ongo-

ing ground-based analyses.

When we �rst began assembling large-scale mining

systems, we were somewhat surprised to �nd that only

a small fraction of the code in such systems is devoted

to the core algorithms. Instead, the bulk of the code

provides infrastructure, which in broad terms includes

everything that enables the user to manage and in-

teract with data and algorithms. Since much of the

infrastructure cuts across image mining applications,

we have developed a distributed (web-based) system

that factors out and reuses the common code. The

system is called Diamond Eye as one of the core ca-

pabilities to be supported is the ability to �nd objects

of interest, �gurative \diamonds", in large image col-

lections. Here, we brie
y describe the Diamond Eye

architecture and some of the system-level issues that

a�ect the design. A more comprehensive discussion is

given in [4].

3.1 Diamond Eye Architecture

As shown in Figure 1, the basic Diamond Eye ar-

chitecture consists of a custom server, which is closely

coupled with an object-oriented database and a com-

putational engine. Users interact with the server

through a cross-platform Java3 applet interface. The

applet allows the user to browse and annotate images,

formulate queries, request data mining services, and

display results. Each data mining server handles the

execution of user requests and data routing between

various system components. In a typical deployment,

3Java is an object-oriented language developed by Sun Mi-
crosystems for platform-independent, distributed computing in
a heterogeneous networked environment.



the server is coupled with a high-performance com-

putational engine (e.g., a network of workstations)

that provides parallel execution of computationally in-

tensive image mining operations. An object-oriented

database provides persistent storage to users and the

system itself. The database also enables users to pose

queries over the \mined" information.

3.2 Database

Because of the security restrictions imposed on ap-

plets, the Diamond Eye client program cannot access

the user's local �lesystem; hence, any persistent stor-

age for information that should exist across user ses-

sions must be provided through the server. Although

the server's �lesystem could be used for this purpose,

a database is the preferred solution since it enables the

user to easily perform arbitrary navigation and queries

over both the raw data and accumulated results.

In earlier system prototypes, relational and object-

relational databases were used to store the results of

image mining operations. A single type of data struc-

ture, a table, is used in these databases to maintain

information. The rows of each table correspond to

instances and the columns correspond to attributes.

Thus, a table of employees might have a row for each

employee and a number of columns with information

such as name, hometown, and hireDate. Since the

number of di�erent hometowns is likely to be much

smaller than the number of employees, a gain in stor-

age eÆciency is possible by storing a townID in the

Employee table and providing a second table that

links townID to the name of the town (a string).

Although the relational (table) model works well for

some domains, we have found it cumbersome for image

mining applications. Therefore, we are now exploring

the use of object-oriented databases (OODB).

A key advantage of an OODB is that it stores ob-

jects using the structures of the native programming

language; the developer can think exclusively in terms

of the natural data structures for the problem (in our

case Java classes/objects) without mapping back and

forth between the table representation and the nat-

ural representation. Further, the use of the natural

data structures provides maximum 
exibility in terms

of the objects and relationships that can be easily rep-

resented. In particular, a number of objects that are

needed in image mining such as recognition models,

graphical relationships, etc. are not easy to represent

in the table framework.

The OODB also exploits many of the bene�ts of

object-oriented programming including the ability to

have class hierarchies and methods (functions) associ-

ated with objects. A more complete argument for the

use of OODBs in image mining is presented in [24].

3.3 Algorithm Interface

One of the fundamental constraints in the design of

Diamond Eye was that it should be easy to add new al-

gorithms to the system. This goal is achieved through

the use of wrapper objects that provide a uniform way

to shuttle data and parameters back and forth be-

tween the Diamond Eye system and the algorithms,

which are implemented as external (stand-alone) pro-

grams and scripts. The decision to use external pro-

grams/scripts rather than function calls through the

Java Native Interface (JNI) was based in part on the


exibility provided4.

With the external program/script approach, the al-

gorithm developer simply supplies an executable ver-

sion of the code compiled from the developer's lan-

guage of choice along with a Java wrapper known as

an \algorithm object". All algorithm objects are de-

rived from an abstractAlgorithm class, which simply

means that algorithm objects must implement a set

of methods that are \promised" by the Algorithm

class5. Methods that are promised include the means

for the system to get algorithm-speci�c parameters

from the user, save and load data to/from the �le sys-

tem (the �le system serves as a form of shared memory

between the system and external programs), assem-

ble the command line string used to call the external

program, properly handle the output of the algorithm

(e.g., by displaying detection results on an image), and

so on. More detail on the algorithm interface is given

in [4].

4 Algorithms

In this section, speci�c algorithms that we have ex-

perimented with for extracting information from im-

age collections are described. We note that while there

is a large content-based image retrieval (CBIR) thrust

within the computer vision community [10, 22, 27],

the approach we use di�ers signi�cantly. In the CBIR

community, the focus is on retrieving images that are

\visually similar". There is also an emphasis on mak-

ing queries interactive so that answers are returned

quickly (within a few seconds). Hence, many of the

techniques are based on relatively low-level de�nitions

of content, e.g., precomputed global properties of im-

ages such as color histograms and texture descriptors.

In contrast, the Diamond Eye system is aimed at pro-

viding a \high-end" capability that can provide ac-

cess to speci�c objects within images. In [11] this dis-

4Both approaches can co-exist; however, only the external
program/script approach is currently used.

5Alternatively, this behavior could be implemented with a
Java construct known as an interface.
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Figure 1: The basic Diamond Eye architecture consists of a custom server, which is closely coupled with an

object-oriented database and a computational engine. Users interact with the server through an applet interface.

The server executes user requests and handles data routing, such as retrieval of images from external databases.

tinction is described as �nding \things" rather than

\stu�". Due to the di�erence in emphasis, the Dia-

mond Eye system employs more complex recognition

models, but must rely on the availability of fast, par-

allel hardware to carry out its work. In subsequent

sections, we present several types of recognizers and

query models that are used in the Diamond Eye sys-

tem.

4.1 Recognizers

A common approach for generating recognizers is

to hand-code a set of routines that compute object-

speci�c attributes from the pixel representation of an

object. Often the choice of attributes is determined by

interviewing domain experts to capture their knowl-

edge as a set of high-level features and rules. There

are, however, a number of drawbacks to this approach.

Although the experts are quite good at identifying ex-

amples of the objects of interest, it is often diÆcult

for them to identify precisely what characteristics of

the image region caused their decision. Even when

high-level features are available, e.g., circularity or

symmetry, it is diÆcult to translate these rules into

pixel-level constraints. Perhaps the biggest drawback

is that a new set of attributes and rules is needed for

each new object or domain.

We are pursuing a di�erent approach in which rec-

ognizers are developed automatically through learn-

ing techniques. The knowledge of the domain expert

is captured implicitly through a set of labeled exam-

ples identi�ed by the expert. Learning algorithms are

used to abstract an appearance model of the object

from the training example(s). The model can then be

used to �nd novel instances of the object in an im-

age collection. This approach has the advantage that

it can be used to develop recognizers for di�erent ob-

jects without reprogramming.

4.1.1 Matched �ltering models

The simplest form of recognizer has its origins in the

communications and radar work of the early 1940's.

From this work it is well known that the optimal de-

tector for a known signal in additive white Guassian

noise is a matched �lter, i.e., a �lter whose shape is

exactly matched to the signal one is trying to detect.

This idea has been generalized to 2-D patterns and is

often referred to as template matching [9]. An object

with a �xed appearance is detected by correlating an

image with a �lter/template that exactly matches the

object's appearance. Although this approach is use-

ful in many circumstances, it quickly collapses when



the object of interest is variable in appearance, due

to (1) external variations such as the lighting, object

pose, distance from the camera, etc. and (2) internal

variations that occur when not all instances of the ob-

ject are exactly alike (e.g., di�erent craters or di�erent

volcanoes).

4.1.2 Continuously-scalable template models

One idea for improving upon rigid template detectors

involves using the steerable-scalable-deformable �lter-

ing ideas developed by Freeman and Adelson [12], Per-

ona [20], and others. The basic idea is that a �lter with

parametric dependence [19] can be approximately im-

plemented using a �nite set of basis �lters. We have

applied this approach to generate a scalable version of

matched �ltering that is useful when the primary vari-

ation in the appearance of an object is due to scale [2].

This situation occurs if the distance of the imager from

the object varies or if the object naturally occurs at

di�erent sizes.

The continuously-scalable template (CST) model

is generated from a single \real" example of the ob-

ject, known as the prototemplate. The prototemplate

is typically interactively selected from an image by

the user. For less precise query-type operations or

model bootstrapping when no examples are available,

it is possible to \hand-draw" the prototemplate in Dia-

mond Eye using the mouse and a palette of gray-levels.

Once the prototemplate is selected, it is spatially

resampled to generate a family of templates at closely-

spaced scales covering a factor of two or so in scale-

space. Ideally, each member of the template family

would serve as a matched �lter for detecting the ob-

ject at a particular scale; however, the brute-force ap-

proach of correlating each family member against an

image would be too expensive computationally. In-

stead, the template family is compressed using sin-

gular value decomposition (SVD). This process pro-

vides a reduced-dimensionality linear basis that ap-

proximately represents each family member. The ba-

sis can be used to eÆciently calculate the correlation

of an image with any family member and, therefore,

provides a way to simultaneously detect and size in-

stances of the object over a continuous range of scales.

Coupling this technique with a pyramid representation

of the image provides continuous coverage over orders

of magnitude in scale.

4.1.3 Principal components analysis models

Another form of recognizer that can be used to model

variations within a class of objects is based on princi-

pal components analysis (PCA). PCA was developed

by the statistician Hotelling in the 1930's [13], but

the method was not applied to image recognition ap-

plications until recently [26, 3, 18]. The approach is

similar to that used with the CST models. A fam-

ily of examples of the target object is approximated

by a reduced-dimensionality linear basis. The main

distinction is that PCA is a statistical technique that

requires a number of examples of the target object,

whereas CST models are derived from a single exam-

ple (plus arti�cially synthesized examples). Also, the

examples provided to PCA do not depend on an un-

derlying parameter that varies continuously.

One way to view PCA is to imagine the pixel-

space examples of an object as points lying in a high-

dimensional space (with dimension equal to the num-

ber of pixels in the pattern). For many vision-type

problems it turns out that the examples do not lie

everywhere in the space, but instead reside on a rel-

atively low-dimensional manifold that can be approx-

imated as a hyperplane. The basis vectors are the

coordinate system of the hyperplane and the projec-

tion of an example onto the basis vectors provides

a low-dimensional \feature space" characterization of

the object. Machine learning techniques can be suc-

cessfully applied in this feature space to discriminate

object from non-object.

4.1.4 Spatially-deformable con�gurations

Although both PCA and CST models are useful for

representing variations within an object class, these

techniques su�er from the fact that they attempt

to represent an object's appearance manifold globally

with a single hyperplane. For harder problems, we

believe the single hyperplane model is inadequate and

have developed a new approach [15, 5, 6, 8, 7, 16]

in which these local techniques are used to represent

the appearance of parts of an object and the parts

are linked together through probability distributions

over their spatial arrangement. The probability dis-

tributions can be formulated in a special shape space

that is invariant to geometrical deformations such as

translation, rotation, scaling, and even aÆne trans-

formations [16]. This type of model provides a useful

hybrid of image-based techniques (PCA, CST) and ge-

ometry based techniques (geometric hashing [28, 23],

invariants [17], etc.) The spatially-deformable con�gu-

ration of parts (SDCP) models are hierarchical so that

a whole object can be modeled as a spatial arrange-

ment of parts and the parts in turn can be modeled as

a spatial arrangement of subparts [7]. Like the other

models discussed, SDCP models can be learned from



examples.

4.2 Queries

Queries allow a user to search through a collec-

tion of images and return the set of best matches. In

the CBIR community, queries are typically based on a

combination of low-level properties such as color his-

tograms and texture descriptors. In our formulation,

there is a much closer connection between recognizers

and queries. In fact, the primary di�erence is in what

the user wants for output. If a recognizer is applied

to a collection of images, the user most likely wants to

generate a complete catalog of all instances of the tar-

get object. With queries, the user's focus is instead on

�nding some instances. Hence, query results are pre-

sented as a set of thumbnails showing the set of best

matches. A second implication is that query models do

not need to be as precise as recognizer models. Thus,

queries often are constructed through a visual inter-

face rather than via statistical techniques like PCA.

For example, a visual query-speci�cation interface in-

cluded in Diamond Eye enables an SDCP query to be

generated based on a single example of the object of

interest and relevance feedback from the user.

4.3 Libraries of Recognizers and Queries

As reliable models are developed for recognizing

speci�c objects, the models can be stored in the sys-

tem database and tagged with a name according to

the type of target object. Figure 2 shows a cartoon

representation of several recognizer/query models. A

user, who is preparing to search for some type of ob-

ject, such as craters, can �rst check the database to

determine if such a model already exists. As the user

base grows and more models are contributed to the

database, users will become able search for many dif-

ferent types of object simply by specifying the name of

the object. The system will pull the appropriate rec-

ognizer/query model from the database and apply the

model to one or more images as requested by the user.

In the future, users will have the ability to rate models

along di�erent dimensions (speed, accuracy, etc.) and

provide feedback that can be used to re�ne a model

(e.g., the following identi�cations produced by crater

model xyz do not appear to be craters).

5 Summary

Automatically mining or extracting useful informa-

tion from an image collection is a diÆcult problem

that requires expertise from multiple disciplines. How-

ever, the potential bene�ts are compelling, especially

when image mining capabilities are coupled with an

autonomous agent that is capable of acting upon the

extracted information.

The work we have described has largely focused on

the case where a model of the object of interest is de-

veloped based on previously seen examples. As space-

craft and robotic platforms explore new environments

such as Pluto and the subsurface of Europa, we will

not always know what to expect in advance. For ex-

ample, the Voyager 
y-by of Neptune's moon, Triton,

in the 1980's revealed the existence of \ice geysers",

which were a new type of geologic feature that had not

been seen elsewhere in the solar system. The develop-

ment of a discovery capability to identify such content

in images without a strong prior model for the ap-

pearance provides an interesting direction for future

work.
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