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Infrastructure Network Design and Operation

Physics plays a big role in the design and operation of infrastructure systems

—— Management and Control
Driven by physics >
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| * Load balancing
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Driving Example: Stormwater Infrastructure Networks

Stormwater Network

Credit: Drone Shot of Moving Automobiles!
on an Expressway, by Kendel Media

atch Basin Outfalls ~

Credit:Cropped from
theHudsonR iver, by AndyAthur, CCBY
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Addressing Unwanted Pollutants: The Role of Physics

Detention and Retention Overflow Controls
* Temporarily store stormwater in storage basins * Detect potential flooding conditions and impact
* Release slowly for flood control, peak flow on other areas of network
reduction, erosion control * Dynamics based on gravity and network structure

Control based on fluid dynamics and hydrology

Credit: Trounce Pond, by
Drm310, CCBY-SA

Green Infrastructure

Credit: Rain Garden Installation, PDM !

Permeable pavements, rain gardens, etc. for
managing stormwater to optimize water
retention and pollutant removal

Design based on hydrological and soil physics
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Dry Weather Flows (DWFs)

lllicit discharges into stormwater networks during dry weather / low flow conditions with no rain

ource: City of High Point Storm

Nature of Dry Weather Flows

o s o » Transient and Spontaneous
Petroleum, solvents, oil,
Millers River Watershed Council

Used wash water, [

High Point, NC * E.g., illegal dumping into a catch basin

* Varying pollutant loads

* Driven by physics of flow propagation

Illicit discharge,
Prince William County, VA

Diesel spill,
Grand Prairie, TX

PublicWorks
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On Monitoring Dry Weather Flows (DWFs)

Current techniques are inadequate

* Manual inspections, citizen reports, site visits in
large, regional catchment areas

* Testing kits and laboratory analysis require 3-5

weeks for processing
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The Promise of the Internet-of-Things
New real-time monitoring capabilities
Rapid detection and management of events
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The DWF Source Identification Problem

Input: Output:
DWF Source :
Stormwater Network P > Infer pollution sources and
_ |dentification ,
Sensor Observations from amounts, and their
predeployed sensors? evolution over time

1 Chio et al., STEP: Semantics-aware Sensor Placement for Monitoring Community-Scale Infrastructure. ACM BuildSys 23



On Effective Source Identification

Input:

Stormwater Network
Sensor Observations from
predeployed sensors

DWF Source

Identification

Output:

Infer pollution sources and
amounts, and their
evolution over time

v
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/" Traditional Method®

* Physical observations,
sampling post hoc lab analysis

* Very low probability of success

Bayesian Approach?

* Pollutant origin treated as
random variable and likelihood
updated using sensor data
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1Bernstein et al, Environment Monitor Assess ‘09, Li et al., Environmental Pollution 23
2Snodgrass et al, Water Resource Research'gy, Zenget al, Advances in Water Resources ‘12
3Banik etal, Water'17, Han et al, J. Hydrology ‘20,

4Grbcicetal, J. Hydroinform ‘20, Mo et al, Water Resources Research'1g

Optimization-based Approaches3 \

ML/DL-based Approaches#

Greedy heuristics and evolutionary
algorithms
Faster, but sub-optimal

Training models to identify source
nodes through observed data
Require large amounts of data
May need heavy tuning + computation



The Role of Physics in DWF Source Identification

Input: Output:
DWF Source :
Stormwater Network P > Infer pollution sources and
_ |dentification ,
Sensor Observations from amounts, and their
predeployed sensors evolution over time

o —— — — — — — — — — e e

Black Box Approach White Box Approach
Leverages pre-defined set of inputs to cache * Modeling and solving for embedded physical
Source identification searches through run results equations in simulations are studied directly
of prior physics-based simulations * Exploit underlying computational model to
examine effects of specific inputs
* Requires deep knowledge of the domain and
underlying physics + computation model

— e — — — — — — — — — — — — — — — — — — — o s e s s s s e s o
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Our Approach: Design of a Backwards Inference Model

Construct an efficient and effective physics-based DWF
backwards inference model by deriving a close approximation
of the physics that govern stormwater flow dynamics

a Where?

Given sensor observations, where could a DWF anomaly originate from?

a How much?

How much flow should be expected at a suspected origin location?



Formulation: Stormwater Infrastructure Graph

 Directed Graph G = (V, &)

* Nodes v; € V (Junctions)
* Location (xj,yj)
* Invert elevation z;

* Edgese;; € £ (Conduits)
* Length L;;
* Frictional roughness f;;
* Shape §;;
* Slope m;; (derived)




Flow Propagation within Stormwater Networks

Tald : L +AQiner+A
Principles of Flow Propagation Qi+At = Q+ ?:f(r; Qpres
fric

* Conservation of Mass: o _ (A A
— 4+ 00 _ 0 AQiner = ZU(At+At o At) + UZ( = up)
5 T o EPA SWMM: R
using Dynamic AQ - K( dn up) At
Wave Analysis pres & L
» Conservation of Momentum: AQgric = gn? |AlAt
aQ . 4(Q%/4) oH . rie R*/3
o T ax 9451945 =0 jtHAt — gt 4 At (Zof+¥eaY)

2 (AsN+YAsp)tHAt

Q = Flow Rate
H = Hydraulic Head

*EPA SWMM. https://[www.epa.gov/water-research/storm-water-management-model-swmm
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Approximations to Flow Propagation for Differentiability (1)

1. Dry Boundary Conditions Intuition for Approximation:
Remove dry boundary conditions; always

update Q4 regardless of current cross-
sectional flow area

1+ Aeric

Qt + AQ'ner + AQpres e
QAL — 1 if A= ey
0t else



Approximations to Flow Propagation for Differentiability (2)

2.

Critical and surcharged
flows near maximum
capacities

Intuition for Approximation:

Since dry weather flows are (by definition) occur in
dry weather / low flow conditions, conduits will
not reach critical or surcharged states

QAL = min{Qt+At; Qnorm} where

1.49 2/3 2
Qnorm = TAupRuz/o \/Lz - (Hup - Hdown)



Approximations to Flow Propagation for Differentiability (3)

3. Backwards Flow Support

Intuition for Approximation:
Backwards flow occurs when rate of flow
introduction is critical; this does not occur in dry
weather conditions

Qt+At lf Qt . Qt+At > 0

Qt+At —
0.0001 x sign(Qt*At) else



Approximations to Flow Propagation for Differentiability (4)

4. Measuring closeness to
criticality in conduits

Intuition for Approximation:
Differentiable approximation made for weight
factors that are used for numerical stability of

Dynamic Wave Analysis
1 lfFT <0.5 14
o=42(1—-Fr) if05<Fr<1 _
0 ifFr > 1
Y 0 05 1.0 15
— 1717 g Fr
where Fr = |U|/ (vT/)

I 11&

o = (1+exp(10 * (Fr — 0.75))) ™" b X

0 05 10 1.5
Fr




DWF Anomaly Flows and Sensor Observations

.

Ground Truth Flow at v

Nl

Ground Truth Flow at v;

DWF Anomaly «;, € A

‘  Origin node vy,

 DWF inflow curve ngwf (t)

Ground Truth Flow at v,

/.
~/Sl

‘ Sensors; € 5

* Periodicity of measurement A; sec

Sensor Observation
from sensor s; at v3 : obs
‘,, Flow observations { Q2 (t)}tET*
Q >

Ground Truth Flow at v,




Problem Statement: DWF Source Identification

\\ |
\ ]

N

Inferred Flow at vy

Ny

Inferred Flow at v4

Vk

Inferred Flow at v,

\

Sensor Observation
from sensor sy at vy

Sensors §* € S observe ay, and

make observations {Q2P*

. }SlES*
Assumption:

Only one DWF occurs in the network at a time.

DWF anomaly ay introducing
;‘ flow 027 at node Vg

Goal:
Infer the flow Q;':f to
introduce at v* that
would most likely produce

b
QY S}SlES* forthe set of
candidate nodes V"



Our Approach: Design of a Backwards Inference Model

Construct an efficient and effective physics-based DWF
backwards inference model by deriving a close approximation
of the physics that govern stormwater flow dynamics

- @
=
-
M
q
M
N

How much flow should be expected at a suspected origin location?



Finding Initial Potential Sources for Anomalies

\ Solving for where: pruning set V*

Potential Sources
V* — {Ul, Uy, V3, v4_}



Leveraging non-zero sensor observations

Remove v, as a
potential source

Solving for where: pruning set V"

Intuition 1:
Non-zero sensor observations imply that DWF
anomaly must lie upstream

Constraint:

Eliminate nodes that do not lie upstream of the
sensor’s deployed node

Update: V* <« V* NnV¥P



Leveraging lack of sensor observations

Heuristically
eliminate parents
of v1 and v,

Solving for where: pruning set V"

Intuition 2:

No sensor observations imply that either:

(1) the DWF anomaly does not lie upstream; or
(2) the DWF anomaly lies upstream, but is no

longer detectable U

Constraint:

Eliminate nodes that lie within a threshold t 4
of the sensor’s deployed node

Determine T4 empirically using [QM™N, QMAX]

Update: V* « V* — 4P



Our Approach: Design of a Backwards Inference Model

Construct an efficient and effective physics-based DWF
backwards inference model by deriving a close approximation
of the physics that govern stormwater flow dynamics

a Where?

Given sensor observations, where could a DWF anomaly originate from?



Formulating a Least Squares Regression

IForeachv* € V*;
Potential DWF Flow Profile

2
obs __ nsimu( . nAWS )
argdrmrll;n Z Z Qs (¢) s, (t’ Qy* ) Sensor Observations at time t

SIES™ tET

Simulated value at sensor,

S. L.
: : d
QMIN < Q™I (1) < QMAX VieT given the DWF inflow Qv*wf
— v* —
Qt+at = Q*+AQiner+AQpres vieT Constraints on the min/max value of le”f(t)
1+4Qfric
e tint Physics of flow propagation, subject to the

pe+ar — g 4 A QR oy o approximations made for differentiability

2 (AsN+YAsp)tHat

Efficient optimization of regression using fast, non-linear solvers;
Qs™* () provides expected flows resulting from Qg*w 40



Algorithm 1: Source Inference Intuition

Input: Graph G, Sensors S, Observations { ng}Sl s
float 14, float 74, float 7,

[/ Copsie set of povenciat origin noces | PhasexWhere?

1 V0

o e NN

10

11

12

25



Experiments: 6 Real-World Stormwater Networks

Real-World Networks
e 6 EPASWMM® networks

of stormwater systems in
Southern California, USA

Area (km?) | N AE E Area (km?2) ¢ jes | Area (km?)

of varying sizes U sae | w6 | sas | .4-; | 354 | 348 | 109.06 | 601 | 691 | 11989
e Provided by Orange County | = = fas~% /
9‘ 59 ' ; , ] s e
Public Works (OCPW) ; " e

# Nodes | # Edges | Area (km?) # Nodes Area (km?) | ssg &l # Nodes Area (km?)
1034 1014 187.24 | =) | 982 209.24 s 1522 _389.93

("C PublicWorks

*EPA SWMM. https://[www.epa.gov/water-research/storm-water-management-model-swmm



Experimental Setup Details

Sensors

* Considered homogenous flow sensors that generate observations with periodicity A = 30 sec

* Assumption: Sensors are pre-deployed in network at varying levels of instrumentation (10%, 25%,
50%, 75%, 100%0)

DWF Anomalies

* 100 anomalies constructed randomly for each network:
* Origin chosen randomly
* Inflow curve with max. magnitude |0.25 + 0.2] cfs
* Start/end times range between o and 2 hours

Comparison Baseline

* Simulated and cached 10 anomalies uniformly across all junctions of each network
* Ananomaly is “inferred” by searching for the best match to a given set of sensor observations

Implementation Details
* Mz MacBook Pro (16 GB memory, 10 CPU cores)
* Implemented in Julia using JUMP interface to Ipopt, and MAx57 solver for optimization



Experiment 1: Impact of Approximations

* Examine impact of the approximations made
on the accuracy of modeling and solving for
flow dynamics

* The average MSE between EPA SWMM and
our differentiable version across all anomalies
is negligible.

* Bottom figure illustrates an example of a
typical anomaly simulated using EPA SWMM,
compared against our differentiable version

The approximations made to the physics of flow
propagation are negligible — all MSE values are very small.

Impact of Approximations

Network

Avg MSE

Anaheim

2e-3 £+ 2e-2

Coyote Creek Downstream  9e-6 £ le-5

Coyote Creek Upstream

Newport

Santa Ana Downstream

Santa Ana Upstream

3e-4 + 2e-3
3e-6 + 4e-6
le-2 4 8e-4
le-5 &+ le-5

Comparison of edge flows from a typical anomaly

o
~
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0.0
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(b) Differentiable Version



Experiment 2: Accuracy of the Backwards Inference Model

MSE of Backwards Inference Model

4 w —— Anaheim
* The average MSE for anomalies reconstructed at 2 CopoteCreekDs
- - 0.04 - —— CoyoteCreekUS
the correct origin drops for all networks: 5 — Newport
. . . B —— SantaAnaDS
* 10% instrumentation yields ~0.02 MSE S . — santannaus
. . . + = —— Avg.
* 100% instrumentation yields ~0.0 MSE 2 0.02.
2
o -
* Inferred flow for a typical anomaly shows very o
. . <
small differences for reconstructed anomalies. 0.0 0%  40%  60% _ 80%  100%

% of network instrumented

* Results from cache-based comparison baseline

depend on quality of cache Example Inferred Flow for a Typical Anomaly

. 05 . —— Ground Truth
“LE — Inf(10%), MSE=0.001
‘l._Jf 04_ Inf{25%), MSE=0.001
" o — Inf(50%), MSE=0.0
. . 2 0.3 /,/. « --- Cache(100%), MSE=0.003
Our model accurately infers flows for the anomalies 2 0o, ‘

evaluated, across different levels of instrumentation. @04
0.
“ 0.0

0 2000 4000 6000
Time (s)



Experiment 3: Time taken by the Backwards Inference Model

* The average time taken for a reconstruction result

Time taken for Inference increases with higher level of instrumentation for

2000 ——— all networks:
€ 1500 | - Covetecreeios * 10% instrumentation: ~250 seconds
o T et e 100% instrumentation: 800-1300 seconds
g 10001 — santaAnaus
E —e— Avg. Inf. Time
8] . .
£ 500 * Standard baseline caching approach too
S significantly less time, but consumed ~14.3GB of
q T T T T T
20% =~ 40%  ©0%  80%  100% memory, generated over ~3 days

% of network instrumented

Our model infers flows in a timely manner, which is
essential for supporting real-time control and management.



Experiment 4: Degeneracy of Results

* The number of other equally-likely potential
sources generally decreases with higher
levels of instrumentation for all networks:

. _ .,
* 10% instrumentation: 18% degenerate g 0%
sources 3 40%

* 100% instrumentation: ~0% degenerate
sources

Our model helps eliminate improbable nodes as sources as
captured data increases, and degree of uncertainty decreases.

Degeneracy of Results

| l

—— Anaheim
CoyoteCreekDS
CoyoteCreekUS
Newport
SantaAnaD5
SantaAnaUS
-8 Avg. Degeneracy

20% 40% 60% 80%  100%
% of network instrumented



Key Takeaways and Future Directions

*  We presented a physics-based backwards inference model for stormwater networks

* Several approximations of the physics driving flow propagation were applied to allow
compatibility with fast, non-linear solvers

* Sixreal-world stormwater networks were used for evaluation, showing the accuracy and
timeliness of our backwards inference model over a standard black box caching approach

GitHub Link
* Our code is publicly available on GitHub: @3-;;: 5:°=s;s=5-=;;s°@

* https://github.com/andrewgchio/SWMMBackwardsInference

* Ongoing and Future Work:
* Explainability of DWF anomalies
* Multiple & concurrent potential contaminants at varying points of the network
* Study the generalization of this technique to other real-world infrastructures

5 ~ ’ ®
) UCIRVINE 0:9 Los Alamos PuthWOI'kS @

NATIONAL LABORATORY



https://github.com/andrewgchio/SWMMBackwardsInference
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