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Built Utility Infrastructures are Critical Lifelines
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Built Infrastructures are Strained and Prone to Failure

Rising Urban Populations

* Infrastructure usage and impact from failures
@ THE WORLD BANK
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The World Bank - Urban Population Estimates
2010 2020 2050

249,849,720 272,364,755 334,298,000

Urban Ipopulatlon 80.8 82.7 89.2

of total population)
\j +22.5M

Worsening Climate Change
* Since 1980, 310 weather/climate disasters causing

over $2T* in damages
* In past 5 years: 85 disasters, $742.1B*

U.S. 2021 Billion-Dollar Weather and Climate Disasters
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Aging & Low Investments in Modernization

Large funding gaps for maintenance
Systems exceeding or at end of life

Fallen
Power Lines
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Driving Use Case: Stormwater Infrastructure Networks

Stormwater

Rainfall
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on an Expressway, by Kendel Media
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by Bob Wick, CCBY.
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Challenge: Addressing Pollutants

Current techniques are inadequate

Manual inspections, citizen reports, site visits
Water quality measured using testing kits and
laboratory analysis

3-5 weeks to turnaround

Geo-distributed Infrastructure

* Large, regional coverage areas
* Scarce historical data
* 1000s of catch basins, outfalls as entry points

{ A

‘Credit: Stormdrain,
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Nature of Pollutants
* Transient phenomena
* e.g., bacterial decay, pollutant dilution
* Spontaneous introduction
* e.g., lllegal dumping
* Heterogeneous pollutants
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Enabling Smart Monitoring using the Internet-of-Things

Internet-of-
Things (loT)

Smart Campus*

\x— \ o\
Mgl
Smart Healthcare?

Where should IoT sensors be

deployed to support reliable and
effective monitoring solutions?

High-Rise Buildings*

1Lin, Y., Jiang, D., Yus, R., Bouloukakis, G., Chio, A., Mehrotra S., Venkatasubramanian, N. Locater: Cleaning Wifi Connectivity Datasets for Semantic Localization. In PVLDB 2021.

2Catarinucci, L., De Donno, D., Mainetti, L., Palano, L., Patrono, L., Stefanizzi, M. L., Tarricone, L. An loT-aware architecture for smart healthcare systems. In IEEE loT-J 2015.

3 Haseeb, K., Ud Din, I., Almogren, A., Islam, N. An energy efficient and secure loT-based WSN framework: An application to smart agriculture. Sensors 2020.

sLiv, F., Baijnath-Rodino, J. A., Chang, T. C., Banerjee, T., Venkatasubramanian, N. DOME: Drone-assisted Monitoring of Emergent Events For Wildland Fire Resilience. In ICCPS 2023.
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Gaining Insight into Sensor Deployments

Structural

Physical characteristics of
network junctions and conduits

Junctions (Nodes):
location, elevation, depth
Conduits (Edges):
length, cross-sectional area, roughness




Gaining Insight into Sensor Deployments

Structural

Behavioral

Physical characteristics of
network junctions and conduits

Junctions (Nodes):

location, elevation, depth

Conduits (Edges):

length, cross-sectional area, roughness

Responses to various stimuli in
the network, and their impact

Domain Expert
Simulators
(EPA SWMM3?)

Study effect and reach of anomalies
on network through simulations

* EPA SWMM. https://www.epa.gov/water-research/storm-water-management-model-swmm




Structural

Gaining Insight into Sensor Deployments

Behavioral

Semantic

Physical characteristics of
network junctions and conduits

Junctions (Nodes):
* location, elevation, depth
Conduits (Edges):

* length, cross-sectional area, roughness

Responses to various stimuli in
the network, and their impact

Simulators
(EPA SWMM2)

Study effect and reach of anomalies
on network through simulations

Influences from specific land uses
of a community on anomalies

m AGRIC. = COMM. = INDUS. = OTHERS

Examine relationships between
pollutants and potential sources




The STEP Approach

4 )

Preprocessing

Community semantics
learning from
land use data
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Realistic Anomalies to inform Sensor Placement

~
- Historical
- Dataset D
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2017-05-23, 10:02 FVES@Dos .03 Turbidity: 1.2
2017-06-30, 08:22 FVES@Dosg 0.14 Elec. Cond.: 906
2019-05-15, 08:00 COFo7So01 0.28 Turbidity: 4.03
2019-07-24, 09:10 COFo7S01 0.21 Temp.:26.24

(((0(((. (

2019-08-07,08:28  GGCo0250172DS 0.09 Elec. Cond.: 6543

2019-07-17,08:25 IRVFo6P06 0.11 Turbidity: 3.5 Sets OfRealIStICAnomahes

How can we learn from past instances of anomalies?
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Extracting Anomalies from Water Quality Data

Learn different types of behaviors in the network

Stormwater Network P Simulated
= ~— Anomalies
-
: -
D.omaln Expert = —
, Simulators -— =
% / : (EPA SWMM?) -
—
? \{ - - =
& ==
-—
Generate uniformly distributed anomalies o Reachability from an origin

Simulate and cache behavior in network
0 Duration of anomaly

0 Phenomenon produced

0 Nearby community-level semantics

12
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Extracting Anomalies from Water Quality Data

Stormwater Network Anomaly

Profiles
Domain Expert
’ Simulators
% / (EPA SWMM?)

?\’i‘-}“

Generate uniformly distributed anomalies

Simulate and cache behavior in network _ _
Apply agglomerative clustering to group

anomalies into profiles, based on
similarity of impact (behavior) in network

13
* EPA SWMM. https://www.epa.gov/water-research/storm-water-management-model-swmm



Extracting Anomalies from Water Quality Data

Anomaly
Profiles

Historical
Dataset D

IS T T

2017-05-23, 10:02
2017-06-30, 08:22
2019-05-15, 08:00
2019-07-24, 09:10
2019-08-07,08:28

2019-07-17,08:25

FVES@Dos
FVES@Dosg
COFo7So01
COFo7So01
GGCo0250172DS
IRVFo6P06

0.14
0.28
0.21
0.09

0.11

Turbidity: 1.2
Elec. Cond.: 906 /7

Turbidity: 4.03 ’ ’

Temp.:26.24

Elec. Cond.: 6543

Turbidity: 3.5 ) ) ) ) _
Match historical instances to anomaly profiles to weigh

them by probability of occurrence
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Generating Realistic Anomalies using Semantics

Realistic
Anomalies

Anomaly

i Stormwater Network
Profiles

Select an anomaly Initialize new anomalies
(and corresponding at other locations with
semantic land use) same semantic land use
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The STEP Approach

~
. Topological Placement
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>
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> Sensor Placement

[
Y
M(;)detls & |Historical || Site Visit CE:;E‘%‘;EY I:r ’bNetwo}I;k ‘o‘a' Simulator
ata Gra
Reports Semantics P

J

16



Optimization Objectives

Objective: Coverage COV

Ability of a placement to capture and
observe anomalies in the network

1
COV(X,A,G) = — Z covered(v;, X, A(v;))
|(V| v;eV
covered(vi, X, A(v;)) =

1 > ). D xOBLKPT(k,j) > plA(o)]

o, €A(v;) v; €V 51€S

Objective: Traceability TR

Ability of a placement to use
observations to track the origin of an

anomaly
[1v]

TROXAG) = D >,

a €A s eS(P)) vjeV

up
(ij,ock,/\’

Betweenness Centrality BTNV

e # of anomalies passing through a node
e BTN (V) = Y 4eq lltime(a, v*,v) < 1]

/

Branching Complexity BC

e Degree of merging/splitting at upstream nodes

« BC(v)) =

1 if ISROOt(Uj)
BC(v;)

viEpa(vj) max _BC(v;)
Vi€pa 17])

N

otherwise

max _BC(v;) +

viepa(v;

\

Semantic Entropy S€

 Skewness in distribution of upstream semantic land uses
«SE(U, G) = Xyeu Am(—P(up) log P(un))

where P(u,,) = Zvievup (Area(vy, ) /Xy, ey Area(vi, up))
vj
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The STEP Sensor Deployment Optimization

Algorithm 2: Sensor Placement

Input: Graph G, Sensors S, Anomalies A, int Npqr¢, Budget

Output: Placement X
1 _

2
3

4

5
6

score «—
WeooABT N (vj) + HEABC(vj) + - ASE(vj)

if score < best then best < (score,v;) ;

Ggubs — G.AddSplit(vpart)

7 nodes < GetPartitionNodes(Ggyps)
8 placement < placement U Sensorize(nodes)

9
10

11

12

13

14

15

4

t T 1t 11

Intuition:

Score nodes based on their betweenness centrality
(BTN), branching complexity (BC), and semantic
entropy (SE)
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The STEP Approach

= . Topological Placement Placement O
FEPTOCESSING Information . Optimization Refinement N

iy . O
Community semantics Empirical Select graph partition Interactive N

learning from Information Optimization for Dashboard > o
land use data > Sensor Placement What-if Analysis £

—————————————————————————————————————————————————————————————————— Domain Experts

Models & Community Network a Simulator
Data Data

Site Visit
Reports

Land Use
Semantics

Graph o

J

- - e —— m—i_ — —
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Placement Refinement

An ideal placement may not be practical!

v Network Visualization

. Pote nt i a I Va N d a I i S Map Visualization Global Network Properties

Junctions 1522 Conduits 1507 Subc

Total Area 100455 Node Density

>

ocC

Avg Flow Complexity 2.57 Avg Centrality

tribution

ntington ! £ . Junctions

Node: J64
Elevation: 688.3800
< Max Depth: 20.0000
pall 5 A8 " o ' et LM  Branching Complexity:  1.0000
[ ] [ ] ’ d 4 . e s v
P hys I ca I ba rrl e rs to R ' L& P B a ; Betweenness Centrality: 1.0000
e & NS _iTh \ Dods,
' Vs /L3 lat: 33.7054

easy human aCCESS . . : fn«vst“-':"nr‘\:":hb,,:',';b vlvon: -117.6939

> Network Ingest

Placement Parameters

The STEP toolkit includes a https://github.com/andrewgchio/STEP
dashboard for domain

experts to refine a potential
placement as needed
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Experiments: 6 Real-World Stormwater Networks

Real-World Networks Coyote CreekUS

* 6 EPASWMM? networks
of stormwater systems in
Southern California, USA
of varying sizes

* Considered 7 different
types of semantic land
uses in networks

* Provided by Orange County

| Area (km?) | JT L # Edges | Area (km32)
8218 |[L¥

I ‘ 7 s ss ' Si e & ! 0N X 1
Public Works (OCPW) # Nodes [ # Edges | Area (km?) | ] # Nodes Avea (am) | s Area (km?)
1034 187.24 | =] 209.24 389.93
m AGRICULTURE m COMM_SERV = INDUSTRIAL MIX_COMM
= MIX_URBAN m HI_DENSITY m LO_DENSITY m OTHER

("CPublicWorks

21
* EPA SWMM. https://www.epa.gov/water-research/storm-water-management-model-swmm



Sensors, Historical Data, and Anomalies

' 4
Sensors Considered %/2:3 Historical Data _ CPublicWorks
* 5real types of sensors considered * 1292 historical grab samples from
Table 1: Sensors considered in placement 30 locations
Phenomenon | Accuracy | Hardware & Depl. Cost | Op. Cost ° Spa ns 16 years from 2006 t0 2022
Turbidity 11.6% $100 $300 .
Depth 1 mm $150 $350 * Provided by OCPW
Temperature 0.5°C $200 $300
Electric Cond. 10% $150 $300
Velocity 5 mm/s $150 $350 Anomalies

* Random anomalies defined uniformly
across nodes in networks,
 Random duration 30 + 5 minutes
 Random flow rate 0.2 + 0.2 cfs,
| * Randomly sampled phenomena
Turbidity Sensor  Depth Sensor  Electrical Conductivity, ~ * Realistic set of anomalies (derived from
Temperature Sensor historical data) for evaluation

S Catsamas et al., Characterisation and development of a novel low-cost radar velocity and depth sensor. In SPN 2022.
2B. Shi et al. A low-cost water depth and electrical conductivity sensor for detecting inputs into urban stormwater networks. In Sensors 2021. 22
3M Wang et al., An Innovative Low-cost Turbidity Sensor for Long-term Turbidity Monitoring in the Urban Water System. In ICUD 2021.


https://www.bosl.com.au/wiki/Turbidity_Sensor

Baselines and Performance Metrics

Baseline Comparisons

* Greedy Heuristics: select node/sensor to optimize heuristic
* Naive-COV (radial), Naive-BTN
* Coverage, Traceability

* Genetic Algorithm: simulates natural selection/evolution
* Coverage, Traceability

Performance Measures
 Number of (realistic) anomalies detected

* Traceability of anomalies
* Coverage of nodes in network

23



Experiment 1: Number of Anomalies Detected

S CoyoteCreekUS Network S Anaheim Network S Newport Network
5 60 E 60 § 60
‘8 501 5 501 5 501 —=— Naive-COV
o 2 2 —+— Naive-BTN
8 401 8 401 8 40 —— Greedy-COV
0 301 3 30 3 301 —— Greedy-TR
T © 5n | © 90 | —— Genetic-COV
= 20 g 20 ~ . /g/; g 20 —— Genetic-TR
20 TS e o o o 9% 0 0 e o o © 03V 5 o o o o © ©
< Q Q Q Q Q Q Q¥ < Q Q Q Q Q Q Q< Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
,»0 ,1,0 ,,)0 b‘Q <’)Q Q.)Q ,\Q ,»Q ’19 ,,)Q b‘Q (,)Q (00 ,\0 ,»0 ,1,0 ,,)Q D‘Q (,)Q Q)Q ,\Q
Budget($) Budget($) Budget($)

(a) Coyote Creek Upstream (Small 1) (d) Anaheim (Med 1) (f) Newport Beach (Large 1)

* Onaverage, STEP detected 35-528%, 32-309% and 1-207% more anomalies for

the small, medium, and large networks than the baseline approaches

* Difference in efficacy of STEP is more pronounced in smaller networks

STEP proposes a heterogenous sensor placement that is effective at
supporting detection of realistic anomalies
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Experiment 2: Traceability

CoyoteCreekUS Network Anaheim Network

—~ 60! 60 60 Newport Network
S o X
S50] 550 550 —=— Naive-COV
= ind =40 =40 —+— Naive-BTN
240 S | 3 2 ~+ Greedy-COV
Y 30 / g 301 v 301 —— Greedy-TR
© © © i
2901 201 © 201 —— Genetic-COV
= /,/*——”/’—’4‘ = + ) V| F 3 : . , —+— Genetic-TR
9101 =+ 2101 2101 — STEP
< 0 . . . . . § § < 0 2 . § § . . . < OA : : ‘ . . . §
Q Q Q Q Q Q Q Q Q Q Q Q Q O Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
,»0 ,1/0 ,,)Q b‘Q Q (00 ,\Q ,\‘Q ’1«0 ,,)Q D‘Q (,)Q Q)Q ,\Q ,\9 ’LQ ,,)Q D(Q (,)Q Q)Q ,\Q
Budget($) Budget($) Budget($)
(a) Coyote Creek Upstream (Small 1)  (d) Anaheim Network (Med 1) (f) Newport Beach (Large 1)

* On average, traceability of anomalies supported by STEP was 30-671%, 43-

400% and 3-272% better for the small, medium, and large networks than the
baseline approaches

STEP proposes a heterogenous sensor placement that is effective at
supporting potential traceability of anomalies after they occur
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Key Takeaways and Future Directions

* We developed STEP: a system for sensor deployments that integrates structural, behavioral, and

semantic aspects of an infrastructure
* A novel anomaly generator based on community-level semantics
* A graph partitioning + optimization leveraging key network properties
* A prototype system for deployment refinement

* Our experiments show the efficacy of this approach on 6 real-world networks
* Future Directions:
* Leverage proposed sensor deployment in a real stormwater network

* Provide analysis support for pollutant source identification

* Our code is publicly available on GitHub: https://github.com/andrewgchio/STEP

* Acknowledgements:
* NSF SWADE Project (https://www.sites.uci.edu/swade)
 UC National Laboratory Fees Research Program — Los Alamos National Laboratory
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