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Built Infrastructures are Strained and Prone to Failure
Rising Urban Populations
• Infrastructure usage and impact from failures

Aging & Low Investments in Modernization
• Large funding gaps for maintenance
• Systems exceeding or at end of life

Worsening Climate Change
• Since 1980, 310 weather/climate disasters causing 

over $2T* in damages 
• In past 5 years: 85 disasters, $742.1B* 

+22.5M
Broken Pipes

Fallen 
Power Lines
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Driving Use Case: Stormwater Infrastructure Networks

Rainfall

Excess Irrigation

Stormwater

Cities and Communities

Stormwater Network
Catch Basins Network / Channels Outfalls

Rivers, Bays, Ocean

Oils and Greases

Pesticides

Unpermitted wastewater

Chemicals
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Challenge: Addressing Pollutants 

Nature of Pollutants
• Transient phenomena

• e.g., bacterial decay, pollutant dilution
• Spontaneous introduction

• e.g., Illegal dumping
• Heterogeneous pollutants

Current techniques are inadequate
• Manual inspections, citizen reports, site visits
• Water quality measured using testing kits and 

laboratory analysis
• 3-5 weeks to turnaround

Geo-distributed Infrastructure
• Large, regional coverage areas
• Scarce historical data
• 1000s of catch basins, outfalls as entry points
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Enabling Smart Monitoring using the Internet-of-Things

Internet-of-
Things (IoT)Smart Campus1

Stormwater Infrastructure

High-Rise Buildings4

Smart Agriculture3

Smart Healthcare2

?

Where should IoT sensors be 
deployed to support reliable and 
effective monitoring solutions? 
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Gaining Insight into Sensor Deployments
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Structural
Physical characteristics of 

network junctions and conduits 

Junctions (Nodes): 
• location, elevation, depth
Conduits (Edges): 
• length, cross-sectional area, roughness



Gaining Insight into Sensor Deployments
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1 EPA SWMM. https://www.epa.gov/water-research/storm-water-management-model-swmm
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Structural
Physical characteristics of 

network junctions and conduits 

Junctions (Nodes): 
• location, elevation, depth
Conduits (Edges): 
• length, cross-sectional area, roughness

Semantic
Influences from specific land uses 

of a community on anomalies

AGRIC. COMM. INDUS. OTHERS

Examine relationships between 
pollutants and potential sources

Behavioral
Responses to various stimuli in 
the network, and their impact
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The STEP Approach
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Realistic Anomalies to inform Sensor Placement

Time t Node v Flow f Obs. o
2017-05-23, 10:02 FVES@D05 0.03 Turbidity: 1.2

2017-06-30, 08:22 FVES@D05 0.14 Elec. Cond.: 906

2019-05-15, 08:00 COF07S01 0.28 Turbidity: 4.03

2019-07-24, 09:10 COF07S01 0.21 Temp. : 26.24

2019-08-07,08:28 GGC02S0172DS 0.09 Elec. Cond.: 6543

2019-07-17,08:25 IRVF06P06 0.11 Turbidity: 3.5

… … … …

Historical 
Dataset 𝐷

Sets of Realistic Anomalies

A

B C

D
E

How can we learn from past instances of anomalies?
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Extracting Anomalies from Water Quality Data

Domain Expert 
Simulators 
(EPA SWMM1) 

Stormwater Network

Generate uniformly distributed anomalies
Simulate and cache behavior in network
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1 EPA SWMM. https://www.epa.gov/water-research/storm-water-management-model-swmm

Learn different types of behaviors in the network

Reachability from an origin

Duration of anomaly

Phenomenon produced

Nearby community-level semantics

Simulated 
Anomalies



Extracting Anomalies from Water Quality Data

Domain Expert 
Simulators 
(EPA SWMM1) 

Stormwater Network

Generate uniformly distributed anomalies
Simulate and cache behavior in network

Apply agglomerative clustering to group 
anomalies into profiles, based on 
similarity of impact (behavior) in network

13
1 EPA SWMM. https://www.epa.gov/water-research/storm-water-management-model-swmm

Anomaly 
Profiles



Extracting Anomalies from Water Quality Data

Match historical instances to anomaly profiles to weigh 
them by  probability of occurrence
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Time t Node v Flow f Obs. o
2017-05-23, 10:02 FVES@D05 0.03 Turbidity: 1.2

2017-06-30, 08:22 FVES@D05 0.14 Elec. Cond.: 906

2019-05-15, 08:00 COF07S01 0.28 Turbidity: 4.03

2019-07-24, 09:10 COF07S01 0.21 Temp. : 26.24

2019-08-07,08:28 GGC02S0172DS 0.09 Elec. Cond.: 6543

2019-07-17,08:25 IRVF06P06 0.11 Turbidity: 3.5

… … … …

Historical 
Dataset 𝐷

Anomaly 
Profiles



Generating Realistic Anomalies using Semantics

Stormwater Network

Select an anomaly 
(and corresponding 
semantic land use)

Initialize new anomalies 
at other locations with 
same semantic land use

15

Realistic 
Anomalies

Anomaly 
Profiles
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Optimization Objectives
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Ability of a placement to capture and 
observe anomalies in the network

Objective: Coverage 𝑪𝑶𝑽
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Figure 1: STEP Components and Work�ow

placement to maximize the coverage and traceability of anomalies.
Finally, we develop an interactive toolkit to facilitate e�ective de-
ployments and incorporate domain-expert feedback.

3 MODELING NETWORK STRUCTURE AND
BEHAVIOR

We model key elements of the infrastructure network and de�ne
several properties based on its structure and behavior.

Infrastructure Network Model. The geo-distributed infras-
tructure network ismodeled as a directed acyclic graphG = (V , E),
where node E 9 2 V is a junction (candidate location for instrumen-
tation) and edge (E8 , E 9 ) 2 E is a conduit with �ow from E8 to E 9 .
G is characterized by several properties to model the physics of
�ow/contaminant propagation. Let ?0(E 9 ) be the direct parents of
E 9 in G , and ?0C⌘(E8 , E 9 ) be the path of nodes observing �ow from
E8 to E 9 .

Community Model. To model the community, let semantic
land use D< 2 U express how citizens utilize and interact with the
land (e.g., industrial, residential, etc.). We observe that each D< can
produce di�erent types of anomalies in the network. For instance,
industrial areas are more likely to release harmful chemicals than
residential areas. For node E 9 , let U(E 9 ) denote the semantic land
uses near E 9 , and �A40(E 9 ,D<) denote the area near E 9 with land
use D< . Each D< is assigned a priority _< (de�ned by a domain
expert) that represents the importance of monitoring anomalies
from D< .

Sensor Model. We de�ne a sensor B; 2 S with the 3-tuple
(?; , n

022
; , 2; ), which describes a sensor measuring phenomenon ?;

with Gaussian error n022; . Its cost 2; includes purchasing hardware,
deploying it in the �eld, and maintaining it over time. We let S(? )
be the set of sensors measuring ? .

Anomaly Model. We de�ne a transient anomaly U: 2 A using
the 5-tuple (E⇤: , C

B
: , C

4
: ,P: ,D: ), which describes an anomaly origi-

nating at node E⇤: with duration (CB: , C
4
: ). The phenomena P: are

produced by U: , and detected by a sensor B; i� its measured phe-
nomenon ?; is in P: . The anomaly is more likely to be produced
by the land use D: . We use A(E8 ) to denote the set of anomalies
whose origin node is E8 . We let C8<4 (U: , E

⇤
: , E 9 ) be the time taken

for U: to propagate from E⇤: to node E 9 (which is 1 if �ow from E⇤:
cannot reach E 9 ).

De�nition: Placement. We represent a candidate placement,
X, as a matrix whose entries G; 9 = 1 i� a sensor B; is deployed at
node E 9 , and 0 otherwise.

De�nition: Node Coverage. A typical de�nition of network
coverage is purely structural, i.e. based on how many nodes fall
within sensor range. In contrast, we de�ne coverage as the ability
to capture a set of anomalies in the network. We look to optimize
the node coverage ⇠$+ , i.e., the proportion of nodes monitored
by the placement X, wrt. the set of anomalies A, as in Eqn. 1a. A
node E8 is covered by X if at least d% of the anomalies originating
at E8 can be detected by downstream sensors in X, as shown in
Eqn. 1b. This implies that sensor B; must observe anomaly U: , i.e.,
?; 2 P: , and the propagation time to an instrumented node E 9
is bounded by g , i.e., C8<4 (U: , E

⇤
: , E 9 )  g . We express these with

$⌫(;,:) and %) (:, 9). Note that E 9 must lie downstream of E⇤: in
G for C8<4 (U: , E

⇤
: , E 9 ) to be bounded by g . The indicator function

“1 [BC<C]” is 1 if statement BC<C is true, and 0 otherwise.

⇠$+ (X,A,G) = 1
|V |

’
E8 2V

2>E4A43 (E8 ,X,A(E8 )) (1a)

2>E4A43 (E8 ,X,A(E8 )) =

1
266664

’
U: 2A(E8 )

’
E9 2V

’
B; 2S

G; 9$⌫(;,:)%) (:, 9) � d |A(E8 ) |
377775

(1b)

De�nition: Traceability. We de�ne traceability to describe the
degree to which sensor observations can help track the origin of an
anomaly. LetGD?

E9 be the upstream subgraph of node E 9 induced from
the nodes VD?

E9 upstream of E 9 . Then, let GD?
E9 ,U: ,X

be an induced

subgraph of GD?
E9 , consisting of nodes E8 where the anomaly U:

originating at E⇤: would �rst be observed by a sensor at E 9 . Then,
the traceability )' for placement X is the average proportion of
nodes that lie in each GD?

E9 ,U: ,X
, for the given anomalies A, as in

Eqn. 2.

)' (X, A, G ) = 1
|A |

’
U: 2A

’
B; 2S(P: )

’
E9 2V

����VD?
E9 ,U: ,X

����
� ��V �� (2)

De�nition: BetweennessCentrality. Identifying nodes through
which more �ow propagation occurs can indicate natural deploy-
ment candidates. The betweenness centrality of a node E 9 empiri-
cally measures the number of anomalies observed at E 9 before time
threshold g , as shown in Eqn. 3.

BTN(E9 ) =
’

U: 2A
1
⇥
C8<4 (U: , E

⇤
: , E9 )  g

⇤
(3)

De�nition: BranchingComplexity. The complexity of branch-
ing in a network, i.e., merges/splits at nodes, is important in deter-
mining its traceability. Networks with high branching have more
junctions through which �ows combine, which then requires more
sensors to monitor. We de�ne branching complexity BC in Eqn. 4,
which formalizes the notion that an upstream graph of a “chain”
structure is easier to trace than a complex “tree” structure.

BC(E9 ) =

8>>>>>><
>>>>>>:

1 if IsRoot(E9 )

BC<0G
?0 (E9 ) +

’
E8 2?0 (E9 )

BC(E8 )
BC<0G

?0 (E9 )
� 1 else

where: BC<0G
?0 (E9 ) = max

E8 2?0 (E9 )
BC(E8 )

(4)
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placement to maximize the coverage and traceability of anomalies.
Finally, we develop an interactive toolkit to facilitate e�ective de-
ployments and incorporate domain-expert feedback.

3 MODELING NETWORK STRUCTURE AND
BEHAVIOR

We model key elements of the infrastructure network and de�ne
several properties based on its structure and behavior.
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E 9 in G , and ?0C⌘(E8 , E 9 ) be the path of nodes observing �ow from
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which more �ow propagation occurs can indicate natural deploy-
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De�nition: BranchingComplexity. The complexity of branch-
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placement to maximize the coverage and traceability of anomalies.
Finally, we develop an interactive toolkit to facilitate e�ective de-
ployments and incorporate domain-expert feedback.

3 MODELING NETWORK STRUCTURE AND
BEHAVIOR

We model key elements of the infrastructure network and de�ne
several properties based on its structure and behavior.

Infrastructure Network Model. The geo-distributed infras-
tructure network ismodeled as a directed acyclic graphG = (V , E),
where node E 9 2 V is a junction (candidate location for instrumen-
tation) and edge (E8 , E 9 ) 2 E is a conduit with �ow from E8 to E 9 .
G is characterized by several properties to model the physics of
�ow/contaminant propagation. Let ?0(E 9 ) be the direct parents of
E 9 in G , and ?0C⌘(E8 , E 9 ) be the path of nodes observing �ow from
E8 to E 9 .

Community Model. To model the community, let semantic
land use D< 2 U express how citizens utilize and interact with the
land (e.g., industrial, residential, etc.). We observe that each D< can
produce di�erent types of anomalies in the network. For instance,
industrial areas are more likely to release harmful chemicals than
residential areas. For node E 9 , let U(E 9 ) denote the semantic land
uses near E 9 , and �A40(E 9 ,D<) denote the area near E 9 with land
use D< . Each D< is assigned a priority _< (de�ned by a domain
expert) that represents the importance of monitoring anomalies
from D< .

Sensor Model. We de�ne a sensor B; 2 S with the 3-tuple
(?; , n

022
; , 2; ), which describes a sensor measuring phenomenon ?;

with Gaussian error n022; . Its cost 2; includes purchasing hardware,
deploying it in the �eld, and maintaining it over time. We let S(? )
be the set of sensors measuring ? .

Anomaly Model. We de�ne a transient anomaly U: 2 A using
the 5-tuple (E⇤: , C

B
: , C

4
: ,P: ,D: ), which describes an anomaly origi-

nating at node E⇤: with duration (CB: , C
4
: ). The phenomena P: are

produced by U: , and detected by a sensor B; i� its measured phe-
nomenon ?; is in P: . The anomaly is more likely to be produced
by the land use D: . We use A(E8 ) to denote the set of anomalies
whose origin node is E8 . We let C8<4 (U: , E

⇤
: , E 9 ) be the time taken

for U: to propagate from E⇤: to node E 9 (which is 1 if �ow from E⇤:
cannot reach E 9 ).

De�nition: Placement. We represent a candidate placement,
X, as a matrix whose entries G; 9 = 1 i� a sensor B; is deployed at
node E 9 , and 0 otherwise.

De�nition: Node Coverage. A typical de�nition of network
coverage is purely structural, i.e. based on how many nodes fall
within sensor range. In contrast, we de�ne coverage as the ability
to capture a set of anomalies in the network. We look to optimize
the node coverage ⇠$+ , i.e., the proportion of nodes monitored
by the placement X, wrt. the set of anomalies A, as in Eqn. 1a. A
node E8 is covered by X if at least d% of the anomalies originating
at E8 can be detected by downstream sensors in X, as shown in
Eqn. 1b. This implies that sensor B; must observe anomaly U: , i.e.,
?; 2 P: , and the propagation time to an instrumented node E 9
is bounded by g , i.e., C8<4 (U: , E

⇤
: , E 9 )  g . We express these with

$⌫(;,:) and %) (:, 9). Note that E 9 must lie downstream of E⇤: in
G for C8<4 (U: , E

⇤
: , E 9 ) to be bounded by g . The indicator function

“1 [BC<C]” is 1 if statement BC<C is true, and 0 otherwise.

⇠$+ (X,A,G) = 1
|V |

’
E8 2V

2>E4A43 (E8 ,X,A(E8 )) (1a)

2>E4A43 (E8 ,X,A(E8 )) =

1
266664

’
U: 2A(E8 )

’
E9 2V

’
B; 2S

G; 9$⌫(;,:)%) (:, 9) � d |A(E8 ) |
377775

(1b)

De�nition: Traceability. We de�ne traceability to describe the
degree to which sensor observations can help track the origin of an
anomaly. LetGD?

E9 be the upstream subgraph of node E 9 induced from
the nodes VD?

E9 upstream of E 9 . Then, let GD?
E9 ,U: ,X

be an induced

subgraph of GD?
E9 , consisting of nodes E8 where the anomaly U:

originating at E⇤: would �rst be observed by a sensor at E 9 . Then,
the traceability )' for placement X is the average proportion of
nodes that lie in each GD?

E9 ,U: ,X
, for the given anomalies A, as in

Eqn. 2.

)' (X, A, G ) = 1
|A |

’
U: 2A

’
B; 2S(P: )

’
E9 2V

����VD?
E9 ,U: ,X

����
� ��V �� (2)

De�nition: BetweennessCentrality. Identifying nodes through
which more �ow propagation occurs can indicate natural deploy-
ment candidates. The betweenness centrality of a node E 9 empiri-
cally measures the number of anomalies observed at E 9 before time
threshold g , as shown in Eqn. 3.

BTN(E9 ) =
’

U: 2A
1
⇥
C8<4 (U: , E

⇤
: , E9 )  g

⇤
(3)

De�nition: BranchingComplexity. The complexity of branch-
ing in a network, i.e., merges/splits at nodes, is important in deter-
mining its traceability. Networks with high branching have more
junctions through which �ows combine, which then requires more
sensors to monitor. We de�ne branching complexity BC in Eqn. 4,
which formalizes the notion that an upstream graph of a “chain”
structure is easier to trace than a complex “tree” structure.

BC(E9 ) =

8>>>>>><
>>>>>>:

1 if IsRoot(E9 )

BC<0G
?0 (E9 ) +

’
E8 2?0 (E9 )

BC(E8 )
BC<0G

?0 (E9 )
� 1 else

where: BC<0G
?0 (E9 ) = max

E8 2?0 (E9 )
BC(E8 )

(4)
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placement to maximize the coverage and traceability of anomalies.
Finally, we develop an interactive toolkit to facilitate e�ective de-
ployments and incorporate domain-expert feedback.

3 MODELING NETWORK STRUCTURE AND
BEHAVIOR

We model key elements of the infrastructure network and de�ne
several properties based on its structure and behavior.

Infrastructure Network Model. The geo-distributed infras-
tructure network ismodeled as a directed acyclic graphG = (V , E),
where node E 9 2 V is a junction (candidate location for instrumen-
tation) and edge (E8 , E 9 ) 2 E is a conduit with �ow from E8 to E 9 .
G is characterized by several properties to model the physics of
�ow/contaminant propagation. Let ?0(E 9 ) be the direct parents of
E 9 in G , and ?0C⌘(E8 , E 9 ) be the path of nodes observing �ow from
E8 to E 9 .

Community Model. To model the community, let semantic
land use D< 2 U express how citizens utilize and interact with the
land (e.g., industrial, residential, etc.). We observe that each D< can
produce di�erent types of anomalies in the network. For instance,
industrial areas are more likely to release harmful chemicals than
residential areas. For node E 9 , let U(E 9 ) denote the semantic land
uses near E 9 , and �A40(E 9 ,D<) denote the area near E 9 with land
use D< . Each D< is assigned a priority _< (de�ned by a domain
expert) that represents the importance of monitoring anomalies
from D< .

Sensor Model. We de�ne a sensor B; 2 S with the 3-tuple
(?; , n

022
; , 2; ), which describes a sensor measuring phenomenon ?;

with Gaussian error n022; . Its cost 2; includes purchasing hardware,
deploying it in the �eld, and maintaining it over time. We let S(? )
be the set of sensors measuring ? .

Anomaly Model. We de�ne a transient anomaly U: 2 A using
the 5-tuple (E⇤: , C

B
: , C

4
: ,P: ,D: ), which describes an anomaly origi-

nating at node E⇤: with duration (CB: , C
4
: ). The phenomena P: are

produced by U: , and detected by a sensor B; i� its measured phe-
nomenon ?; is in P: . The anomaly is more likely to be produced
by the land use D: . We use A(E8 ) to denote the set of anomalies
whose origin node is E8 . We let C8<4 (U: , E

⇤
: , E 9 ) be the time taken

for U: to propagate from E⇤: to node E 9 (which is 1 if �ow from E⇤:
cannot reach E 9 ).

De�nition: Placement. We represent a candidate placement,
X, as a matrix whose entries G; 9 = 1 i� a sensor B; is deployed at
node E 9 , and 0 otherwise.

De�nition: Node Coverage. A typical de�nition of network
coverage is purely structural, i.e. based on how many nodes fall
within sensor range. In contrast, we de�ne coverage as the ability
to capture a set of anomalies in the network. We look to optimize
the node coverage ⇠$+ , i.e., the proportion of nodes monitored
by the placement X, wrt. the set of anomalies A, as in Eqn. 1a. A
node E8 is covered by X if at least d% of the anomalies originating
at E8 can be detected by downstream sensors in X, as shown in
Eqn. 1b. This implies that sensor B; must observe anomaly U: , i.e.,
?; 2 P: , and the propagation time to an instrumented node E 9
is bounded by g , i.e., C8<4 (U: , E

⇤
: , E 9 )  g . We express these with

$⌫(;,:) and %) (:, 9). Note that E 9 must lie downstream of E⇤: in
G for C8<4 (U: , E

⇤
: , E 9 ) to be bounded by g . The indicator function

“1 [BC<C]” is 1 if statement BC<C is true, and 0 otherwise.

⇠$+ (X,A,G) = 1
|V |

’
E8 2V

2>E4A43 (E8 ,X,A(E8 )) (1a)

2>E4A43 (E8 ,X,A(E8 )) =

1
266664

’
U: 2A(E8 )

’
E9 2V

’
B; 2S

G; 9$⌫(;,:)%) (:, 9) � d |A(E8 ) |
377775

(1b)

De�nition: Traceability. We de�ne traceability to describe the
degree to which sensor observations can help track the origin of an
anomaly. LetGD?

E9 be the upstream subgraph of node E 9 induced from
the nodes VD?

E9 upstream of E 9 . Then, let GD?
E9 ,U: ,X

be an induced

subgraph of GD?
E9 , consisting of nodes E8 where the anomaly U:

originating at E⇤: would �rst be observed by a sensor at E 9 . Then,
the traceability )' for placement X is the average proportion of
nodes that lie in each GD?

E9 ,U: ,X
, for the given anomalies A, as in

Eqn. 2.

)' (X, A, G ) = 1
|A |

’
U: 2A

’
B; 2S(P: )

’
E9 2V

����VD?
E9 ,U: ,X

����
� ��V �� (2)

De�nition: BetweennessCentrality. Identifying nodes through
which more �ow propagation occurs can indicate natural deploy-
ment candidates. The betweenness centrality of a node E 9 empiri-
cally measures the number of anomalies observed at E 9 before time
threshold g , as shown in Eqn. 3.

BTN(E9 ) =
’

U: 2A
1
⇥
C8<4 (U: , E

⇤
: , E9 )  g

⇤
(3)

De�nition: BranchingComplexity. The complexity of branch-
ing in a network, i.e., merges/splits at nodes, is important in deter-
mining its traceability. Networks with high branching have more
junctions through which �ows combine, which then requires more
sensors to monitor. We de�ne branching complexity BC in Eqn. 4,
which formalizes the notion that an upstream graph of a “chain”
structure is easier to trace than a complex “tree” structure.

BC(E9 ) =

8>>>>>><
>>>>>>:

1 if IsRoot(E9 )

BC<0G
?0 (E9 ) +

’
E8 2?0 (E9 )

BC(E8 )
BC<0G

?0 (E9 )
� 1 else

where: BC<0G
?0 (E9 ) = max

E8 2?0 (E9 )
BC(E8 )

(4)

• # of anomalies passing through a node
• ℬ𝒯𝒩 𝑣 = ∑!∈𝒜 1 𝑡𝑖𝑚𝑒 𝛼, 𝑣∗, 𝑣 ≤ 𝜏

Betweenness Centrality 𝓑𝓣𝓝

• Degree of merging/splitting at upstream nodes 
• ℬ𝒞 𝑣% =

1 𝑖𝑓 𝐼𝑠𝑅𝑜𝑜𝑡 𝑣%
max

&!∈'( &"
ℬ𝒞 𝑣) + ∑&!∈'( &"

ℬ𝒞 &!
,-.

#!∈%& #"
ℬ𝒞 &!

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Branching Complexity 𝓑𝓒

• Skewness in distribution of upstream semantic land uses
• 𝒮ℰ 𝒰, 𝒢 = ∑!∈𝒰 𝜆$(−𝑃 𝑢$ log 𝑃 𝑢$ )

where 𝑃 𝑢$ = ∑%!∈𝒱"#
$% 2(𝐴𝑟𝑒𝑎 𝑣' , 𝑢$ ∑!&∈𝒰𝐴𝑟𝑒𝑎 𝑣' , 𝑢$ )

Semantic Entropy 𝓢𝓔



The STEP Sensor Deployment Optimization
Intuition:

Initialize variables for partitioning  

Construct 𝑁89:; graph partitions at key nodes

Score nodes based on their betweenness centrality 
(BTN), branching complexity (BC), and semantic 
entropy (SE) 

Instrument key locations with sensors

Obtain ideal placements using MILP within each 
partitioned subgraph

Merge partial solutions, and adjust as needed

18

STEP: Semantics-Aware Sensor Placement for Monitoring Community-Scale Infrastructure BuildSys ’23, November 15–16, 2023, Istanbul, Turkey

5.1 Placement Optimization
The core optimization relies on mixed integer linear programming
(MILP), to produce optimal sensor deployments for a given network.
However, due to the large, geo-distributed scale of many utility
infrastructures, pure MILP solutions can be prohibitively di�cult
to solve without reducing its complexity. Thus, we utilize a graph
partitioning strategy to split the network into smaller pieces to
solve, and merge partial solutions using heuristics and domain
expert feedback.

Graph Partitioning. To ensure that the MILP is tractable, we
�rst partition the infrastructure graph G into multiple smaller
subgraphs using the network properties de�ned above. Here, it is
important to �nd graph partitions that group key components of
the network together, so that an optimum can be found within a
partition.

To this end, we note the role that the betweenness centrality
and branching complexity play in in�uencing the coverage and
traceability of a proposed placement. Since the betweenness cen-
trality measures the frequency of anomalies that pass through
nodes and the branching complexity measures the upstream �ow
structure, partitioning on these metrics enables coverage and trace-
ability requirements to be met. We de�ne �BTN(E 9 ), �BC(E 9 ),
and �SE(E 9 ) to represent the total change between the respective
metrics at node E 9 and its parents ?0(E 9 ). This re�ects the mea-
sured quantity at E 9 without in�uence from upstream nodes of E 9 ,
which we use to greedily partition the graph G . That is, our graph
partitioning selecting nodes to instrument which most decrease the
mean betweenness centrality, branching complexity, and semantic
entropy. The tradeo� between coverage and traceability is decided
with a weight on �BTN(·), �BC(·) and �SE(·). We repeat this
for the number of partitions desired, #?0AC . Note that placing all
sensors in S at this point will help to minimize the worst case
coverage and traceability. We detail this process in Alg. 2.

Formulating a MILP and Merging the Solution. For each
subgraph, we formulate and solve the MILP in Eqn. 7. The objective
function de�ned in Eqn. 7a considers both coverage and traceability,
which implicitly capture the sensor placement’s capacity to detect
anomalies, and trace them to a set of potential sources, respectively.
There are two primary constraints considered in the formulation:
7b limits the budget allowed, while 7c limits the number of sensors
measuring a speci�c phenomenon at a node.

max
’

U: 2A

’
G 9; 2X

G; 9F2>E⇠$+ (G; 9 ,U: ) + G; 9FCA)'(G; 9 ,U: ) (7a)

subject to :
’
sl2S

’
vj2V

xljcl  Bc (7b)

’
B; 2S(? )

G; 9  1 8E 9 2 V ,8? 2 P (7c)

Lastly, we merge the placement solutions obtained by the MILPs.
Then, each node in the placement is adjusted based on whether its
migration to an adjacent node can improve the global coverage and
traceability objectives.

Placement Re�nement. While our algorithm generates an
“ideal” solution, deploying sensors at these locations may be infea-
sible or ill-advised. For instance, external factors such as potential

Algorithm 2: Sensor Placement
Input: Graph G , Sensors S, Anomalies A, int #?0AC , Budget ⌫
Output: Placement X

1 ?;024<4=CB  ;;⌧BD1B  ;; 14BC  0; E?0AC  =D;;

2 for 8  1..#?0AC do
3 for E9 2 V , for each subgraph do
4 B2>A4  

F2>E�BTN(E9 ) + FCA
2 �BC(E9 ) + FCA

2 �SE(E9 )
5 if B2>A4 < 14BC then 14BC  (B2>A4, E9 ) ;
6 ⌧BD1B  ⌧ .�33(?;8C (E?0AC )

7 =>34B  ⌧4C%0AC8C8>=#>34B (⌧BD1B )
8 ?;024<4=C  ?;024<4=C [ (4=B>A8I4 (=>34B )
9 for G0  GBD1B do
10 A0  –

E 2V0 A(E )

11 ⌫0  ⌫ · |A
0 |

|A| ; // Budget for subgraph

12 X0  Use MILP to solve Eqn. 7 with budget ⌫0

13 Add X0 to ?;024<4=CB

14 X  �3 9DBC%;024<4=C (?;024<4=C ,⌘>?B = 5)
15 return X

vandalism, location-speci�c communication issues, and physical
barriers preventing human access can require changes to a proposed
placement. To aid domain experts in constructing and re�ning a
sensor placement solution, we develop a STEP interactive toolkit
that provides user-level visualization for each step of our approach.
This allows a human-in-the-loop (i.e., domain expert) to insert
regional infrastructure networks, generate ideal placements, and
alter the suggested placement as desired. Such what-if analysis can
leverage domain expert feedback from the �eld and is critical in
e�ective community scale deployments. More details on the toolkit
are presented later in §7.

6 EXPERIMENTS
We evaluate the STEP framework for six real-world stormwater net-
works. We compare STEP against multiple baseline techniques for
sensor placement, and analyze the number of anomalies detected,
their traceability, and nodes coverage.

6.1 Experimental Setup
Real-worldNetworks. STEP is evaluated on six real-world stormwa-
ter networks covering cities in Southern California in the US. The
networks were provided by Orange County Public Works (OCPW)
and de�ned using EPA SWMM [22]. Fig. 2 visualizes the structure
of the networks and summarizes basic properties. We leverage
the de�nition of subcatchments within the EPA SWMM models to
specify the region surrounding nodes in the network. Three cat-
egories of semantic land uses are de�ned: (i) high priority land
uses with priority _=3: agriculture, commercial-service, industrial;
(ii) medium priority land uses with priority _=2: mixed commer-
cial and mixed urban; (iii) low priority land uses with priority _=1:
hi-density residential, lo-density residential.

Historical Data. We use historical grab sample data provided
by OCPW, which details instances where anomalous behavior was
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https://github.com/andrewgchio/STEP

An ideal placement may not be practical!

Potential Vandalism

Location-specific 
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placement as needed
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Coyote Creek US Santa Ana DSSanta Ana US

Anaheim Coyote Creek DS Newport

# Nodes # Edges Area (km2)
354 348 109.06

# Nodes # Edges Area (km2)
691 691 119.89

# Nodes # Edges Area (km2)
1034 1014 187.24

# Nodes # Edges Area (km2)
981 981 209.24

# Nodes # Edges Area (km2)
1522 1507 389.93

  AGRICULTURE   COMM_SERV   INDUSTRIAL   MIX_COMM
  MIX_URBAN   HI_DENSITY   LO_DENSITY   OTHER

# Nodes # Edges Area (km2)
349 346 82.18

Real-World Networks
• 6 EPA SWMM1 networks 

of stormwater systems in 
Southern California, USA 
of varying sizes

• Considered 7 different 
types of semantic land 
uses in networks

• Provided by Orange County 
Public Works (OCPW)

1 EPA SWMM. https://www.epa.gov/water-research/storm-water-management-model-swmm



Sensors, Historical Data, and Anomalies
Historical Data
• 1292 historical grab samples from 

30 locations 
• Spans 16 years from 2006 to 2022
• Provided by OCPW
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Algorithm 2: Sensor Placement
Input: Graph G , Sensors S, Anomalies A, int #?0AC ,

Budget ⌫
Output: Placement X

1 ?;024<4=CB  ;; ⌧BD1B  ;; 14BC  0; E?0AC  =D;;

2 for 8  1..#?0AC do
3 for E 9 2 V , for each subgraph do
4 B2>A4  

F2>E�BTN(E 9 ) +
FCA
2 �BC(E 9 ) +

FCA
2 �SE(E 9 )

5 if B2>A4 < 14BC then 14BC  (B2>A4, E 9 ) ;
6 ⌧BD1B  ⌧ .�33(?;8C (E?0AC )

7 =>34B  ⌧4C%0AC8C8>=#>34B (⌧BD1B )
8 ?;024<4=C  ?;024<4=C [ (4=B>A8I4 (=>34B)
9 for ⌧ 0  ⌧BD1B do
10 A0  –

E 2V0 A(E )
11 ⌫0  ⌫ · |A0 |

|A | ; // Budget for subgraph

12 X0  Use MILP to solve Eqn. 7 with budget ⌫0

13 Add X0 to ?;024<4=CB

14 X  �3 9DBC%;024<4=C (?;024<4=C,⌘>?B = 5)
15 return X

primary constraints considered in the formulation: 7b limits
the budget allowed, while 7c limits the number of sensors
measuring a speci�c phenomenon at a node.

max
’

U: 2A

’
G 9; 2X

G; 9F2>E⇠$+ (G; 9 ,U: ) + G; 9FCA)'(G; 9 ,U: ) (7a)

subject to:
’
B; 2S

’
E9 2V

G; 92;  ⌫2 (7b)

’
B; 2S(? )

G; 9  1 8E 9 2 V8? 2 P (7c)

Lastly, we merge the placement solutions obtained by the
MILPs. Then, each node in the placement is adjusted based
on whether its migration to an adjacent node can improve
the global coverage and traceability objectives.

Placement Re�nement. While our algorithm generates
an “ideal” solution, deploying sensors at these locations may
be infeasible or ill-advised. For instance, external factors
such as potential vandalism, location-speci�c communica-
tion issues, and physical barriers preventing human access
can require changes to a proposed placement. To aid domain
experts in constructing and re�ning a sensor placement so-
lution, we develop a STEP interactive toolkit that provides
user-level visualization for each step of our approach. This
allows a human-in-the-loop (i.e., domain expert) to insert
regional infrastructure networks, generate ideal placements,
and alter the suggested placement as desired. Such what-
if analysis can leverage domain expert feedback from the
�eld and is critical in e�ective community scale deployments.
More details on the toolkit are presented later in §7.

6 EXPERIMENTS
We evaluate the STEP framework for six real-world stormwa-
ter networks. We compare STEP against multiple baseline
techniques for sensor placement, and analyze the number of
anomalies detected, their traceability, and nodes coverage.

6.1 Experimental Setup
Real-world Networks. STEP is evaluated on six real-world
stormwater networks covering cities in Southern California
in the US. The networks were provided by Orange County
Public Works (OCPW) and de�ned using EPA SWMM [22].
Fig. 2 visualizes the structure of the networks and summa-
rizes basic properties. We leverage the de�nition of sub-
catchments within the EPA SWMM models to specify the
region surrounding nodes in the network. Three categories
of semantic land uses are de�ned: (i) high priority land uses
with priority _=3: agriculture, commercial-service, indus-
trial; (ii) medium priority land uses with priority _=2: mixed
commercial and mixed urban; (iii) low priority land uses with
priority _=1: hi-density residential, lo-density residential.

Historical Data. We use historical grab sample data pro-
vided by OCPW, which details instances where anomalous
behavior was reported in a network and several water quality
metrics were captured. The dataset contains 1292 historical
grab samples from 30 di�erent locations between 2006 and
2022 throughout each evaluated stormwater network.
Sensors. We specify the water quality sensors to deploy

in Table 1. Each sensor measures a di�erent phenomenon,
and was developed by [13, 43, 47]. The sensor costs vary
from $100 to $150 for hardware and deployment. Recurrent
costs for continued operation and maintenance (e.g. cellular
dataplan, battery replacements) range from $300 to $350 per
year, based on rates at which these sensors stop logging data.
The accuracy of the sensor is a constant or a percentage of
the quantity of themeasured phenomenon, and is empirically
derived. In our simulations, we assume that sensors can only
observe an anomaly if the percent di�erence between its
observed value and its simulated value is under 30%.

Table 1: Sensors considered in placement
Phenomenon Accuracy Hardware & Depl. Cost Op. Cost
Turbidity 11.6% $100 $300
Depth 1 mm $150 $350

Temperature 0.5�⇠ $200 $300
Electric Cond. 10% $150 $300

Velocity 5 mm/s $150 $350

Anomalies. To obtain the empirical measurements nec-
essary to compute the metrics de�ned in §5, we construct
two sets of anomalies. First, we de�ne 5 anomaly instances
uniformly across all nodes in each network. These anomalies
have a random duration of 30±5 minutes and �ow rate of
0.2±0.2 cfs. The set of phenomena produced is randomly

1S Catsamas et al., Characterisation and development of a novel low-cost radar velocity and depth sensor. In SPN 2022.
2 B. Shi et al. A low-cost water depth and electrical conductivity sensor for detecting inputs into urban stormwater networks. In Sensors 2021.
3 M Wang et al., An Innovative Low-cost Turbidity Sensor for Long-term Turbidity Monitoring in the Urban Water System. In ICUD 2021.

Sensors Considered 1,2,3

• 5 real types of sensors considered

Anomalies
• Random anomalies defined uniformly 

across nodes in networks, 
• Random duration 30 ± 5minutes
• Random flow rate 0.2 ± 0.2 cfs,
• Randomly sampled phenomena

• Realistic set of anomalies (derived from 
historical data) for evaluation 

Turbidity Sensor Depth Sensor

Credit: Depth Sensor, by BOSLCredit: Turbidity Sensor, by BOSL Credit: EC, Temperature Sensor, by BOSL

Electrical Conductivity, 
Temperature Sensor

https://www.bosl.com.au/wiki/Turbidity_Sensor


Baselines and Performance Metrics

Baseline Comparisons
• Greedy Heuristics: select node/sensor to optimize heuristic
• Naïve-COV (radial), Naïve-BTN
• Coverage, Traceability 

• Genetic Algorithm: simulates natural selection/evolution
• Coverage, Traceability

Performance Measures
• Number of (realistic) anomalies detected
• Traceability of anomalies
• Coverage of nodes in network
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Experiment 1: Number of Anomalies Detected
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anomalies detected. The average percent di�erence between STEP
and the baseline approaches for the highest budget limit evaluated,
ranged between 35.66�528.13% for small networks, 32.08�309.10%
for medium networks, and 0.74�206.90% for the large network. This
implies that using the STEP approach, which leverages semantics
in addition to structural and behavioral aspects of the network was
e�ective for monitoring the semantically generated anomalies. We
observe that the largest factor in determining the actual proportion
of anomalies captured lies in the number of nodes in the network.
That is, the smallest networks (Coyote Creek Upstream and Santa
Ana Upstream) have the highest proportion of anomalies captured,
while the largest network (Newport Beach) has the smallest. We
note that since the budget range used in the evaluation is similar
for each size of network, the placement proposed for the largest
network was unable to be signi�cantly distinguished from other
solutions. In general, this result shows that our approach was able

to propose a sensor deployment that can e�ectively monitor the
network for anomalies.

Traceability. We next examine the degree to which anomalies
can be traced to a potential source. Fig. 4 reports the traceability of
anomalies observed in the network. We plot the average proportion
of nodes that were eliminated as potential sources for each anomaly.
Note that if an anomaly is undetected, no nodes can be eliminated.
The average percent di�erence between the traceability enabled by
STEP and the baselines for the largest budget limit, ranged from
30.30�671.65%, 43.12�400.36%, and 2.95�272.75%, for the small,
medium, and large sized networks. We similarly �nd that the size of
the network most impacts the traceability - since smaller networks
were generally able to detect more anomalies, they were also able
to apply reasoning to eliminate potential source nodes. This show
that STEP deployed sensors in locations that balanced the tradeo�
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anomalies detected. The average percent di�erence between STEP
and the baseline approaches for the highest budget limit evaluated,
ranged between 35.66�528.13% for small networks, 32.08�309.10%
for medium networks, and 0.74�206.90% for the large network. This
implies that using the STEP approach, which leverages semantics
in addition to structural and behavioral aspects of the network was
e�ective for monitoring the semantically generated anomalies. We
observe that the largest factor in determining the actual proportion
of anomalies captured lies in the number of nodes in the network.
That is, the smallest networks (Coyote Creek Upstream and Santa
Ana Upstream) have the highest proportion of anomalies captured,
while the largest network (Newport Beach) has the smallest. We
note that since the budget range used in the evaluation is similar
for each size of network, the placement proposed for the largest
network was unable to be signi�cantly distinguished from other
solutions. In general, this result shows that our approach was able

to propose a sensor deployment that can e�ectively monitor the
network for anomalies.

Traceability. We next examine the degree to which anomalies
can be traced to a potential source. Fig. 4 reports the traceability of
anomalies observed in the network. We plot the average proportion
of nodes that were eliminated as potential sources for each anomaly.
Note that if an anomaly is undetected, no nodes can be eliminated.
The average percent di�erence between the traceability enabled by
STEP and the baselines for the largest budget limit, ranged from
30.30�671.65%, 43.12�400.36%, and 2.95�272.75%, for the small,
medium, and large sized networks. We similarly �nd that the size of
the network most impacts the traceability - since smaller networks
were generally able to detect more anomalies, they were also able
to apply reasoning to eliminate potential source nodes. This show
that STEP deployed sensors in locations that balanced the tradeo�
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anomalies detected. The average percent di�erence between STEP
and the baseline approaches for the highest budget limit evaluated,
ranged between 35.66�528.13% for small networks, 32.08�309.10%
for medium networks, and 0.74�206.90% for the large network. This
implies that using the STEP approach, which leverages semantics
in addition to structural and behavioral aspects of the network was
e�ective for monitoring the semantically generated anomalies. We
observe that the largest factor in determining the actual proportion
of anomalies captured lies in the number of nodes in the network.
That is, the smallest networks (Coyote Creek Upstream and Santa
Ana Upstream) have the highest proportion of anomalies captured,
while the largest network (Newport Beach) has the smallest. We
note that since the budget range used in the evaluation is similar
for each size of network, the placement proposed for the largest
network was unable to be signi�cantly distinguished from other
solutions. In general, this result shows that our approach was able

to propose a sensor deployment that can e�ectively monitor the
network for anomalies.

Traceability. We next examine the degree to which anomalies
can be traced to a potential source. Fig. 4 reports the traceability of
anomalies observed in the network. We plot the average proportion
of nodes that were eliminated as potential sources for each anomaly.
Note that if an anomaly is undetected, no nodes can be eliminated.
The average percent di�erence between the traceability enabled by
STEP and the baselines for the largest budget limit, ranged from
30.30�671.65%, 43.12�400.36%, and 2.95�272.75%, for the small,
medium, and large sized networks. We similarly �nd that the size of
the network most impacts the traceability - since smaller networks
were generally able to detect more anomalies, they were also able
to apply reasoning to eliminate potential source nodes. This show
that STEP deployed sensors in locations that balanced the tradeo�
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anomalies detected. The average percent di�erence between STEP
and the baseline approaches for the highest budget limit evaluated,
ranged between 35.66�528.13% for small networks, 32.08�309.10%
for medium networks, and 0.74�206.90% for the large network. This
implies that using the STEP approach, which leverages semantics
in addition to structural and behavioral aspects of the network was
e�ective for monitoring the semantically generated anomalies. We
observe that the largest factor in determining the actual proportion
of anomalies captured lies in the number of nodes in the network.
That is, the smallest networks (Coyote Creek Upstream and Santa
Ana Upstream) have the highest proportion of anomalies captured,
while the largest network (Newport Beach) has the smallest. We
note that since the budget range used in the evaluation is similar
for each size of network, the placement proposed for the largest
network was unable to be signi�cantly distinguished from other
solutions. In general, this result shows that our approach was able

to propose a sensor deployment that can e�ectively monitor the
network for anomalies.

Traceability. We next examine the degree to which anomalies
can be traced to a potential source. Fig. 4 reports the traceability of
anomalies observed in the network. We plot the average proportion
of nodes that were eliminated as potential sources for each anomaly.
Note that if an anomaly is undetected, no nodes can be eliminated.
The average percent di�erence between the traceability enabled by
STEP and the baselines for the largest budget limit, ranged from
30.30�671.65%, 43.12�400.36%, and 2.95�272.75%, for the small,
medium, and large sized networks. We similarly �nd that the size of
the network most impacts the traceability - since smaller networks
were generally able to detect more anomalies, they were also able
to apply reasoning to eliminate potential source nodes. This show
that STEP deployed sensors in locations that balanced the tradeo�

• On average, STEP detected 35-528%, 32-309% and 1-207% more anomalies for 
the small, medium, and large networks than the baseline approaches

• Difference in efficacy of STEP is more pronounced in smaller networks

STEP proposes a heterogenous sensor placement that is effective at 
supporting detection of realistic anomalies



Experiment 2: Traceability
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anomalies detected. The average percent di�erence between STEP
and the baseline approaches for the highest budget limit evaluated,
ranged between 35.66�528.13% for small networks, 32.08�309.10%
for medium networks, and 0.74�206.90% for the large network. This
implies that using the STEP approach, which leverages semantics
in addition to structural and behavioral aspects of the network was
e�ective for monitoring the semantically generated anomalies. We
observe that the largest factor in determining the actual proportion
of anomalies captured lies in the number of nodes in the network.
That is, the smallest networks (Coyote Creek Upstream and Santa
Ana Upstream) have the highest proportion of anomalies captured,
while the largest network (Newport Beach) has the smallest. We
note that since the budget range used in the evaluation is similar
for each size of network, the placement proposed for the largest
network was unable to be signi�cantly distinguished from other
solutions. In general, this result shows that our approach was able

to propose a sensor deployment that can e�ectively monitor the
network for anomalies.

Traceability. We next examine the degree to which anomalies
can be traced to a potential source. Fig. 4 reports the traceability of
anomalies observed in the network. We plot the average proportion
of nodes that were eliminated as potential sources for each anomaly.
Note that if an anomaly is undetected, no nodes can be eliminated.
The average percent di�erence between the traceability enabled by
STEP and the baselines for the largest budget limit, ranged from
30.30�671.65%, 43.12�400.36%, and 2.95�272.75%, for the small,
medium, and large sized networks. We similarly �nd that the size of
the network most impacts the traceability - since smaller networks
were generally able to detect more anomalies, they were also able
to apply reasoning to eliminate potential source nodes. This show
that STEP deployed sensors in locations that balanced the tradeo�
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anomalies detected. The average percent di�erence between STEP
and the baseline approaches for the highest budget limit evaluated,
ranged between 35.66�528.13% for small networks, 32.08�309.10%
for medium networks, and 0.74�206.90% for the large network. This
implies that using the STEP approach, which leverages semantics
in addition to structural and behavioral aspects of the network was
e�ective for monitoring the semantically generated anomalies. We
observe that the largest factor in determining the actual proportion
of anomalies captured lies in the number of nodes in the network.
That is, the smallest networks (Coyote Creek Upstream and Santa
Ana Upstream) have the highest proportion of anomalies captured,
while the largest network (Newport Beach) has the smallest. We
note that since the budget range used in the evaluation is similar
for each size of network, the placement proposed for the largest
network was unable to be signi�cantly distinguished from other
solutions. In general, this result shows that our approach was able

to propose a sensor deployment that can e�ectively monitor the
network for anomalies.

Traceability. We next examine the degree to which anomalies
can be traced to a potential source. Fig. 4 reports the traceability of
anomalies observed in the network. We plot the average proportion
of nodes that were eliminated as potential sources for each anomaly.
Note that if an anomaly is undetected, no nodes can be eliminated.
The average percent di�erence between the traceability enabled by
STEP and the baselines for the largest budget limit, ranged from
30.30�671.65%, 43.12�400.36%, and 2.95�272.75%, for the small,
medium, and large sized networks. We similarly �nd that the size of
the network most impacts the traceability - since smaller networks
were generally able to detect more anomalies, they were also able
to apply reasoning to eliminate potential source nodes. This show
that STEP deployed sensors in locations that balanced the tradeo�
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anomalies detected. The average percent di�erence between STEP
and the baseline approaches for the highest budget limit evaluated,
ranged between 35.66�528.13% for small networks, 32.08�309.10%
for medium networks, and 0.74�206.90% for the large network. This
implies that using the STEP approach, which leverages semantics
in addition to structural and behavioral aspects of the network was
e�ective for monitoring the semantically generated anomalies. We
observe that the largest factor in determining the actual proportion
of anomalies captured lies in the number of nodes in the network.
That is, the smallest networks (Coyote Creek Upstream and Santa
Ana Upstream) have the highest proportion of anomalies captured,
while the largest network (Newport Beach) has the smallest. We
note that since the budget range used in the evaluation is similar
for each size of network, the placement proposed for the largest
network was unable to be signi�cantly distinguished from other
solutions. In general, this result shows that our approach was able

to propose a sensor deployment that can e�ectively monitor the
network for anomalies.

Traceability. We next examine the degree to which anomalies
can be traced to a potential source. Fig. 4 reports the traceability of
anomalies observed in the network. We plot the average proportion
of nodes that were eliminated as potential sources for each anomaly.
Note that if an anomaly is undetected, no nodes can be eliminated.
The average percent di�erence between the traceability enabled by
STEP and the baselines for the largest budget limit, ranged from
30.30�671.65%, 43.12�400.36%, and 2.95�272.75%, for the small,
medium, and large sized networks. We similarly �nd that the size of
the network most impacts the traceability - since smaller networks
were generally able to detect more anomalies, they were also able
to apply reasoning to eliminate potential source nodes. This show
that STEP deployed sensors in locations that balanced the tradeo�
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anomalies detected. The average percent di�erence between STEP
and the baseline approaches for the highest budget limit evaluated,
ranged between 35.66�528.13% for small networks, 32.08�309.10%
for medium networks, and 0.74�206.90% for the large network. This
implies that using the STEP approach, which leverages semantics
in addition to structural and behavioral aspects of the network was
e�ective for monitoring the semantically generated anomalies. We
observe that the largest factor in determining the actual proportion
of anomalies captured lies in the number of nodes in the network.
That is, the smallest networks (Coyote Creek Upstream and Santa
Ana Upstream) have the highest proportion of anomalies captured,
while the largest network (Newport Beach) has the smallest. We
note that since the budget range used in the evaluation is similar
for each size of network, the placement proposed for the largest
network was unable to be signi�cantly distinguished from other
solutions. In general, this result shows that our approach was able

to propose a sensor deployment that can e�ectively monitor the
network for anomalies.

Traceability. We next examine the degree to which anomalies
can be traced to a potential source. Fig. 4 reports the traceability of
anomalies observed in the network. We plot the average proportion
of nodes that were eliminated as potential sources for each anomaly.
Note that if an anomaly is undetected, no nodes can be eliminated.
The average percent di�erence between the traceability enabled by
STEP and the baselines for the largest budget limit, ranged from
30.30�671.65%, 43.12�400.36%, and 2.95�272.75%, for the small,
medium, and large sized networks. We similarly �nd that the size of
the network most impacts the traceability - since smaller networks
were generally able to detect more anomalies, they were also able
to apply reasoning to eliminate potential source nodes. This show
that STEP deployed sensors in locations that balanced the tradeo�

• On average, traceability of anomalies supported by STEP was 30-671%, 43-
400% and 3-272% better for the small, medium, and large networks than the 
baseline approaches

STEP proposes a heterogenous sensor placement that is effective at 
supporting potential traceability of anomalies after they occur



Key Takeaways and Future Directions

• We developed STEP: a system for sensor deployments that integrates structural, behavioral, and 
semantic aspects of an infrastructure
• A novel anomaly generator based on community-level semantics
• A graph partitioning + optimization leveraging key network properties
• A prototype system for deployment refinement

• Our experiments show the efficacy of this approach on 6 real-world networks 

• Future Directions:
• Leverage proposed sensor deployment in a real stormwater network
• Provide analysis support for pollutant source identification

• Our code is publicly available on GitHub: https://github.com/andrewgchio/STEP

• Acknowledgements: 
• NSF SWADE Project (https://www.sites.uci.edu/swade)
• UC National Laboratory Fees Research Program – Los Alamos National Laboratory
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